A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

Prof. Chuan-Ju Wang
Department of Computer Science
Taipei Municipal University of Education
Joint work with Prof. Yuh-Dauh Lyuu and
Prof. Tian-Shyr Dai

February 26, 2013
Department of Financial and Computational Mathematics
Providence University
1 Introduction

2 Modeling and Preliminaries

3 Lattice Construction

4 Numerical Evaluation

5 Conclusions
A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Introduction

Modeling and Preliminaries

Lattice Construction

Numerical Evaluation

Conclusions

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Sophisticated derivatives are constantly being structured to fit the needs of markets.

- Addressing their sophisticated features significantly increases the difficulty of pricing them.

- Besides, the importance of some factors, like sovereign risk or credit risk, which are overlooked in primitive derivatives pricing models, is being recognized as key due to recent financial crises.

 - E.g., Vulnerable options.\(^1\)

\(^1\)Klein (1996); Klein and Inglis (2001).
Sophisticated derivatives are constantly being structured to fit the needs of markets.

Addressing their sophisticated features significantly increases the difficulty of pricing them.

Besides, the importance of some factors, like sovereign risk or credit risk, which are overlooked in primitive derivatives pricing models, is being recognized as key due to recent financial crises.

E.g., Vulnerable options.¹

¹Klein (1996); Klein and Inglis (2001).
Sophisticated derivatives are constantly being structured to fit the needs of markets.

- Addressing their sophisticated features significantly increases the difficulty of pricing them.

Besides, the importance of some factors, like sovereign risk or credit risk, which are overlooked in primitive derivatives pricing models, is being recognized as key due to recent financial crises.

- E.g., Vulnerable options.\(^1\)

\(^1\)Klein (1996); Klein and Inglis (2001).
Sophisticated derivatives are constantly being structured to fit the needs of markets.

- Addressing their sophisticated features significantly increases the difficulty of pricing them.

Besides, the importance of some factors, like sovereign risk or credit risk, which are overlooked in primitive derivatives pricing models, is being recognized as key due to recent financial crises.

- E.g., Vulnerable options.\(^1\)

\(^1\)Klein (1996); Klein and Inglis (2001).
Need for Numerical Methods

- Most complex derivatives have no analytical formulas for their prices, particularly when there is more than one market variable.

- As a result, these derivatives must be priced by numerical methods such as lattice.

- However, the nonlinearity error of lattices due to the nonlinearity of the derivative’s value function could lead to oscillating prices.\(^2\)

\(^2\)Figlewski and Gao (1999).
Need for Numerical Methods

Most complex derivatives have no analytical formulas for their prices, particularly when there is more than one market variable.

As a result, these derivatives must be priced by numerical methods such as lattice.

However, the nonlinearity error of lattices due to the nonlinearity of the derivative’s value function could lead to oscillating prices.²

²Figlewski and Gao (1999).
Need for Numerical Methods

- Most complex derivatives have no analytical formulas for their prices, particularly when there is more than one market variable.
- As a result, these derivatives must be priced by numerical methods such as lattice.
- However, the nonlinearity error of lattices due to the nonlinearity of the derivative’s value function could lead to oscillating prices.\(^2\)

\(^2\)Figlewski and Gao (1999).
Oscillation Problem

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Multivariate derivatives elevate the pricing difficulty to a new level compared with that of univariate derivatives.

The correlations between the market variables must be carefully handled.

Otherwise, invalid branching probabilities may result.\(^3\)

\(^3\)Zvan et al. (2003).

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Multivariate Derivatives

- Multivariate derivatives elevate the pricing difficulty to a new level compared with that of univariate derivatives.
- The correlations between the market variables must be carefully handled.
- Otherwise, invalid branching probabilities may result.\(^3\)

\(^3\)Zvan et al. (2003).
Multivariate Derivatives

- Multivariate derivatives elevate the pricing difficulty to a new level compared with that of univariate derivatives.
- The correlations between the market variables must be carefully handled.
- Otherwise, invalid branching probabilities may result.\(^3\)

\(^3\)Zvan et al. (2003).
Related Works

- Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.
 - But his lattice is not flexible enough to suppress the nonlinearity error.

- Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.
 - But the branching probabilities can be negative.

- Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.
 - This method can suppress the nonlinearity error.
 - But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\(^4\)

\(^4\)Dai and Lyuu (2010).
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\(^4\)

\(^4\)Dai and Lyuu (2010).
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\(^4\)

\(^4\)Dai and Lyuu (2010).
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\(^4\)
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\(^4\)

\(^4\)Dai and Lyuu (2010).
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.4

4Dai and Lyuu (2010).
Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.

- But his lattice is not flexible enough to suppress the nonlinearity error.

Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.

- But the branching probabilities can be negative.

Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.

- This method can suppress the nonlinearity error.
- But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.\footnote{Dai and Lyuu (2010).}
Main Results

- This paper proposes a multi-phase methodology to build multivariate lattices for pricing complex derivatives with small nonlinearity errors.

- We adopt Hull and White (1990b)'s orthogonalization method to handle the correlations between market variables.
 - The orthogonalization transforms the original, correlated processes into uncorrelated ones.

- The multi-phase method builds the lattice for the transformed, uncorrelated processes.
Main Results

- This paper proposes a multi-phase methodology to build multivariate lattices for pricing complex derivatives with small nonlinearity errors.

- We adopt Hull and White (1990b)’s orthogonalization method to handle the correlations between market variables.
 - The orthogonalization transforms the original, correlated processes into uncorrelated ones.

- The multi-phase method builds the lattice for the transformed, uncorrelated processes.
Main Results

- This paper proposes a multi-phase methodology to build multivariate lattices for pricing complex derivatives with small nonlinearity errors.

- We adopt Hull and White (1990b)'s orthogonalization method to handle the correlations between market variables.
 - The orthogonalization transforms the original, correlated processes into uncorrelated ones.

- The multi-phase method builds the lattice for the transformed, uncorrelated processes.
This paper proposes a multi-phase methodology to build multivariate lattices for pricing complex derivatives with small nonlinearity errors.

We adopt Hull and White (1990b)'s orthogonalization method to handle the correlations between market variables.

- The orthogonalization transforms the original, correlated processes into uncorrelated ones.

The multi-phase method builds the lattice for the transformed, uncorrelated processes.
The Lognormal Diffusion Process

The market variable follows a lognormal diffusion process with a constant volatility σ and a constant riskless rate r:

$$\frac{dS(t)}{S(t)} = r dt + \sigma dz(t),$$

where $dz(t)$ denotes a standard Brownian motion.
The CRR Lattice

- The size of one time step is $\Delta t = T/n$.
- u, d, P_u, P_d:
 - Match the mean and variance of the stock return asymptotically.
 - $ud = 1$.
 - $P_u + P_d = 1$.

![CRR Lattice Diagram](image)
The size of one time step is $\Delta t = T/n$.

u, d, P_u, P_d:
- Match the mean and variance of the stock return asymptotically.
- $ud = 1$.
- $P_u + P_d = 1$.

![The CRR Lattice Diagram](attachment:diagram.png)
The size of one time step is $\Delta t = T/n$.

u, d, P_u, P_d:

- Match the mean and variance of the stock return asymptotically.
- $ud = 1$.
- $P_u + P_d = 1$.
The size of one time step is $\Delta t = T/n$.

- u, d, P_u, P_d:
 - Match the mean and variance of the stock return asymptotically.
 - $ud = 1$.
 - $P_u + P_d = 1$.

\[
\begin{align*}
S_0 &\rightarrow S_0u \\
S_0 &\rightarrow S_0d \\
S_0d &\rightarrow S_0d^2 \\
S_0d^2 &\rightarrow S_0d^3 \\
S_0u &\rightarrow S_0u^2 \\
S_0u^2 &\rightarrow S_0u^3
\end{align*}
\]
The CRR Lattice

- The size of one time step is $\Delta t = T/n$.
- u, d, P_u, P_d:
 - Match the mean and variance of the stock return asymptotically.
 - $ud = 1$.
 - $P_u + P_d = 1$.

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Trinomial Structure

The branching probabilities for the node X

$$\beta \equiv \hat{\mu} - \mu,$$
$$\alpha \equiv \hat{\mu} + 2\sigma \sqrt{\Delta t} - \mu = \beta + 2\sigma \sqrt{\Delta t},$$
$$\gamma \equiv \hat{\mu} - 2\sigma \sqrt{\Delta t} - \mu = \beta - 2\sigma \sqrt{\Delta t},$$
$$\hat{\mu} \equiv \ln \left(\frac{s(B)}{s(X)} \right).$$
Trinomial Structure

The branching probabilities for the node X

$\beta \equiv \hat{\mu} - \mu,$

$\alpha \equiv \hat{\mu} + 2\sigma \sqrt{\Delta t} - \mu = \beta + 2\sigma \sqrt{\Delta t},$

$\gamma \equiv \hat{\mu} - 2\sigma \sqrt{\Delta t} - \mu = \beta - 2\sigma \sqrt{\Delta t},$

$\hat{\mu} \equiv \ln \left(\frac{s(B)}{s(X)} \right).$
The branching probabilities for the node X

$P_u \alpha + P_m \beta + P_d \gamma = 0,$

$P_u (\alpha)^2 + P_m (\beta)^2 + P_d (\gamma)^2 = \text{Var},$

$P_u + P_m + P_d = 1.$
Price Oscillation Problem

- Price oscillation problem is mainly due to the nonlinearity error.
 - Introduced by the nonlinearity of the option value function.
- The solution to the nonlinearity error:
 - Make a price level of the lattice coincide with the location where the option value function is highly nonlinear.
Price Oscillation Problem

- Price oscillation problem is mainly due to the nonlinearity error.
 - Introduced by the nonlinearity of the option value function.

- The solution to the nonlinearity error:
 - Make a price level of the lattice coincide with the location where the option value function is highly nonlinear.
Price Oscillation Problem

- Price oscillation problem is mainly due to the nonlinearity error.
 - Introduced by the nonlinearity of the option value function.
- The solution to the nonlinearity error:
 - Make a price level of the lattice coincide with the location where the option value function is highly nonlinear.
Price Oscillation Problem

- Price oscillation problem is mainly due to the nonlinearity error.
 - Introduced by the nonlinearity of the option value function.
- The solution to the nonlinearity error:
 - Make a price level of the lattice coincide with the location where the option value function is highly nonlinear.
Lattice Construction

- We demonstrate our multi-phase method for two correlated market variables.
 - For more than two market variables, follow the same procedure.

- To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:
 - Order the market variables first.
 - Then orthogonalize the original, correlated processes into uncorrelated ones.

- Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
We demonstrate our multi-phase method for two correlated market variables.

- For more than two market variables, follow the same procedure.

To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:

- Order the market variables first.
- Then orthogonalize the original, correlated processes into uncorrelated ones.

Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
Lattice Construction

- We demonstrate our multi-phase method for two correlated market variables.
 - For more than two market variables, follow the same procedure.
- To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:
 - Order the market variables first.
 - Then orthogonalize the original, correlated processes into uncorrelated ones.
- Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
We demonstrate our multi-phase method for two correlated market variables.

- For more than two market variables, follow the same procedure.

To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:

- Order the market variables first.
 - Then orthogonalize the original, correlated processes into uncorrelated ones.

Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
Lattice Construction

- We demonstrate our multi-phase method for two correlated market variables.
 - For more than two market variables, follow the same procedure.

- To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:
 - Order the market variables first.
 - Then orthogonalize the original, correlated processes into uncorrelated ones.

- Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
We demonstrate our multi-phase method for two correlated market variables.

- For more than two market variables, follow the same procedure.

To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)’s orthogonalization method is revised as follows:

- Order the market variables first.
- Then orthogonalize the original, correlated processes into uncorrelated ones.

Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.
Before the transformation, the market variables are so ordered that the i-th coordinates of the critical locations depend only on the first i of the market variables.

E.g., The two correlated market variables are ordered so that S_1 is followed by S_2 when

- The first coordinates of the critical locations are functions of S_1.
- The second coordinates are functions of S_1 and S_2.
Orthogonalization

Before the transformation, the market variables are so ordered that the i-th coordinates of the critical locations depend only on the first i of the market variables.

E.g., The two correlated market variables are ordered so that S_1 is followed by S_2 when

- The first coordinates of the critical locations are functions of S_1.
- The second coordinates are functions of S_1 and S_2.
Before the transformation, the market variables are so ordered that the i-th coordinates of the critical locations depend only on the first i of the market variables.

E.g., The two correlated market variables are ordered so that S_1 is followed by S_2 when

- The first coordinates of the critical locations are functions of S_1.
- The second coordinates are functions of S_1 and S_2.
Before the transformation, the market variables are so ordered that the i-th coordinates of the critical locations depend only on the first i of the market variables.

E.g., The two correlated market variables are ordered so that S_1 is followed by S_2 when

- The first coordinates of the critical locations are functions of S_1.
- The second coordinates are functions of S_1 and S_2.
Orthogonalization (cont.)

Let S_1 and S_2 be represented as follows:

\[
\begin{align*}
 dS_1 &= \mu_1 dt + \sigma_1 dz_1, \\
 dS_2 &= \mu_2 dt + \sigma_2 dz_2.
\end{align*}
\]

- The correlation between dz_1 and dz_2 is ρ.

Let S_1 and S_2 be represented as follows:

$$dS_1 = \mu_1 dt + \sigma_1 dz_1,$$
$$dS_2 = \mu_2 dt + \sigma_2 dz_2.$$

The correlation between dz_1 and dz_2 is ρ.
Orthogonalization (cont.)

- It is a standard fact that dz_2 can be decomposed into a linear combination of dz_1 and another independent Brownian motion dz:

$$dz_2 = \rho \, dz_1 + \sqrt{1 - \rho^2} \, dz.$$

- The differential forms of S_1 and S_2 can be written as

$$\begin{bmatrix} dS_1 \\ dS_2 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} dt + \begin{bmatrix} \sigma_1 & 0 \\ \sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2} \end{bmatrix} \begin{bmatrix} dz_1 \\ dz \end{bmatrix}.$$

- Now, transform S_1 and S_2 into two uncorrelated processes X_1 and X_2:

$$\begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \begin{bmatrix} -\rho \mu_1 / \sigma_1 \\ \mu_2 / \sigma_2 \sqrt{1 - \rho^2} \end{bmatrix} dt + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} dz_1 \\ dz \end{bmatrix}. \quad (1)$$
Orthogonalization (cont.)

- It is a standard fact that dz_2 can be decomposed into a linear combination of dz_1 and another independent Brownian motion dz:

$$dz_2 = \rho dz_1 + \sqrt{1 - \rho^2} dz.$$

- The differential forms of S_1 and S_2 can be written as:

$$
\begin{bmatrix}
dS_1 \\
dS_2
\end{bmatrix} =
\begin{bmatrix}
\mu_1 \\
\mu_2
\end{bmatrix} dt +
\begin{bmatrix}
\sigma_1 & 0 \\
\sigma_2\rho & \sigma_2\sqrt{1 - \rho^2}
\end{bmatrix}
\begin{bmatrix}
dz_1 \\
dz
\end{bmatrix}.
$$

- Now, transform S_1 and S_2 into two uncorrelated processes X_1 and X_2:

$$
\begin{bmatrix}
dX_1 \\
dX_2
\end{bmatrix} =
\begin{bmatrix}
-\rho \mu_1 / \sigma_1 \\
\mu_2 / \sigma_2\sqrt{1 - \rho^2}
\end{bmatrix} dt +
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
dz_1 \\
dz
\end{bmatrix}. \quad (1)
$$
Orthogonalization (cont.)

- It is a standard fact that dz_2 can be decomposed into a linear combination of dz_1 and another independent Brownian motion dz:

$$dz_2 = \rho \, dz_1 + \sqrt{1 - \rho^2} \, dz.$$

- The differential forms of S_1 and S_2 can be written as

$$
\begin{bmatrix}
\frac{dS_1}{dt} \\
\frac{dS_2}{dt}
\end{bmatrix} =
\begin{bmatrix}
\mu_1 \\
\mu_2
\end{bmatrix} dt +
\begin{bmatrix}
\sigma_1 & 0 \\
\sigma_2 \rho & \sigma_2 \sqrt{1 - \rho^2}
\end{bmatrix}
\begin{bmatrix}
dz_1 \\
dz
\end{bmatrix}.
$$

- Now, transform S_1 and S_2 into two uncorrelated processes X_1 and X_2:

$$
\begin{bmatrix}
\frac{dX_1}{dt} \\
\frac{dX_2}{dt}
\end{bmatrix} =
\begin{bmatrix}
\frac{-\rho \mu_1}{\sigma_1 \sqrt{1 - \rho^2}} + \frac{\mu_2}{\sigma_2 \sqrt{1 - \rho^2}} \\
0
\end{bmatrix} dt +
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
dz_1 \\
dz
\end{bmatrix}.
$$ (1)
Orthogonalization (concluded)

Integrate both sides of Eq. (1) to yield

\[
X_1(t) = \frac{S_1(t) - S_1(0)}{\sigma_1},
\]

\[
X_2(t) = \frac{1}{\sqrt{1 - \rho^2}} \left(\frac{S_2(t) - S_2(0)}{\sigma_2} - \rho X_1(t) \right),
\]

where \(X_1(0) = X_2(0) = 0 \) for convenience.

\(S_1(t) \) and \(S_2(t) \) can be backed out of \(X_1(t) \) and \(X_2(t) \) thus:

\[
S_1(t) = S_1(0) + \sigma_1 X_1(t),
\]

\[
S_2(t) = S_2(0) + \sigma_2 \left(\sqrt{1 - \rho^2} X_2(t) + \rho X_1(t) \right).
\]
Orthogonalization (concluded)

- Integrate both sides of Eq. (1) to yield

\[
X_1(t) = \frac{S_1(t) - S_1(0)}{\sigma_1},
\]

\[
X_2(t) = \frac{1}{\sqrt{1 - \rho^2}} \left(\frac{S_2(t) - S_2(0)}{\sigma_2} - \rho X_1(t) \right),
\]

where \(X_1(0) = X_2(0) = 0\) for convenience.

- \(S_1(t)\) and \(S_2(t)\) can be backed out of \(X_1(t)\) and \(X_2(t)\) thus:

\[
S_1(t) = S_1(0) + \sigma_1 X_1(t),
\]

\[
S_2(t) = S_2(0) + \sigma_2 \left(\sqrt{1 - \rho^2} X_2(t) + \rho X_1(t) \right).
\]
Core Ideas of Our Multi-Phase Branch Construction

- Consider a bivariate lattice that approximates the evolution of two uncorrelated processes $X_1(t)$ and $X_2(t)$.

- The construction contains two phases.
 1. Lattice for $X_1(t)$.
 2. Lattice for $X_2(t)$.
Core Ideas of Our Multi-Phase Branch Construction

- Consider a bivariate lattice that approximates the evolution of two uncorrelated processes $X_1(t)$ and $X_2(t)$.
- The construction contains two phases.
 1. Lattice for $X_1(t)$.
 2. Lattice for $X_2(t)$.

Consider a bivariate lattice that approximates the evolution of two uncorrelated processes \(X_1(t) \) and \(X_2(t) \).

The construction contains two phases.

1. Lattice for \(X_1(t) \).
2. Lattice for \(X_2(t) \).
Core Ideas of Our Multi-Phase Branch Construction

Consider a bivariate lattice that approximates the evolution of two uncorrelated processes $X_1(t)$ and $X_2(t)$.

The construction contains two phases.

1. Lattice for $X_1(t)$.
2. Lattice for $X_2(t)$.

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
A Bivariate Lattice: Two Correlated Market Variables

- We now built a bivariate lattice to price vulnerable barrier options with the strike price K and the barrier $B(t) = Be^{-\gamma(T-t)}$.
 - The two market variables: the stock price, $S(t)$, and the firm's asset value, $V(t)$.
 - The default boundary for the firm's asset value at time t, $D^*(S(t), t) = De^{-r(T-t)} + c(S(t), t)$.
 - In this setup, the option holder receives $c(S(t), t)/D^*(S(t), t)$ of the firm’s asset value when the firm defaults.

5Klein and Inglis (2001).
A Bivariate Lattice: Two Correlated Market Variables

- We now built a bivariate lattice to price vulnerable barrier options with the strike price K and the barrier $B(t) = Be^{-\gamma(T-t)}$.

- The two market variables: the stock price, $S(t)$, and the firm's asset value, $V(t)$.

- The default boundary for the firm’s asset value at time t, $D^*(S(t), t) = De^{-r(T-t)} + c(S(t), t)$.

- In this setup, the option holder receives $c(S(t), t)/D^*(S(t), t)$ of the firm’s asset value when the firm defaults.

5Klein and Inglis (2001).
We now built a bivariate lattice to price vulnerable barrier options with the strike price K and the barrier $B(t) = Be^{-\gamma(T-t)}$.

The two market variables: the stock price, $S(t)$, and the firm’s asset value, $V(t)$.

The default boundary for the firm’s asset value at time t, $D^*(S(t), t) = De^{-r(T-t)} + c(S(t), t)$.\(^5\)

In this setup, the option holder receives

$$c(S(t), t)/D^*(S(t), t)$$

of the firm’s asset value when the firm defaults.

\(^5\)Klein and Inglis (2001).
A Bivariate Lattice: Two Correlated Market Variables

- We now built a bivariate lattice to price vulnerable barrier options with the strike price K and the barrier $B(t) = Be^{-\gamma(T-t)}$.
 - The two market variables: the stock price, $S(t)$, and the firm's asset value, $V(t)$.
 - The default boundary for the firm's asset value at time t, $D^*(S(t), t) = De^{-r(T-t)} + c(S(t), t)$.
- In this setup, the option holder receives
 $$c(S(t), t)/D^*(S(t), t)$$
 of the firm's asset value when the firm defaults.

\(^5\)Klein and Inglis (2001).
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- $S(t)$ and $V(t)$ are both assumed to follow the lognormal diffusion processes.
- We first order the two processes: $\ln S(t)$ is the first process and $\ln V(t)$ the second.
- We then apply the orthogonalization process to obtain two uncorrelated processes.

\[
dX(t) = \frac{1}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) dt + dz_S,
\]

\[
dY(t) = \frac{1}{\sqrt{1 - \rho^2}} \left(-\frac{\rho}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) + \frac{1}{\sigma_V} \left(r - \frac{\sigma_V^2}{2} \right) \right) dt + dz.
\]
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- $S(t)$ and $V(t)$ are both assumed to follow the lognormal diffusion processes.

- We first order the two processes: $\ln S(t)$ is the first process and $\ln V(t)$ the second.

- We then apply the orthogonalization process to obtain two uncorrelated processes.

\[
\begin{align*}
 dX(t) &= \frac{1}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) dt + dz_S, \\
 dY(t) &= \frac{1}{\sqrt{1 - \rho^2}} \left(-\frac{\rho}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) + \frac{1}{\sigma_V} \left(r - \frac{\sigma_V^2}{2} \right) \right) dt + dz.
\end{align*}
\]
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- $S(t)$ and $V(t)$ are both assumed to follow the lognormal diffusion processes.
- We first order the two processes: $\ln S(t)$ is the first process and $\ln V(t)$ the second.
- We then apply the orthogonalization process to obtain two uncorrelated processes.

\[
\begin{align*}
 dX(t) &= \frac{1}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) dt + dz_S, \\
 dY(t) &= \frac{1}{\sqrt{1 - \rho^2}} \left(-\frac{\rho}{\sigma_S} \left(r - \frac{\sigma_S^2}{2} \right) + \frac{1}{\sigma_V} \left(r - \frac{\sigma_V^2}{2} \right) \right) dt + dz.
\end{align*}
\]
The $X(t)$-lattice is first built.

$B(t)$ will be transformed to $B_X(t)$ on the $X(t)$-lattice via:

$$B_X(t) = \frac{1}{\sigma_S} \left(\ln B(t) - \ln S(0) \right).$$

The lattice starts by placing gray nodes on the barrier to reduce the nonlinearity error.

All the other nodes are then laid from the gray nodes upward and downward.
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- The $X(t)$-lattice is first built.
- $B(t)$ will be transformed to $B_X(t)$ on the $X(t)$-lattice via:
 $$B_X(t) = \frac{1}{\sigma_S} \left(\ln B(t) - \ln S(0) \right).$$

- The lattice starts by placing gray nodes on the barrier to reduce the nonlinearity error.
- All the other nodes are then laid from the gray nodes upward and downward.
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- The $X(t)$-lattice is first built.
- $B(t)$ will be transformed to $B_X(t)$ on the $X(t)$-lattice via:
 \[
 B_X(t) = \frac{1}{\sigma_S} (\ln B(t) - \ln S(0)).
 \]
- The lattice starts by placing gray nodes on the barrier to reduce the nonlinearity error.
- All the other nodes are then laid from the gray nodes upward and downward.
A Bivariate Lattice: Two Correlated Market Variables (cont.)

- The $X(t)$-lattice is first built.
- $B(t)$ will be transformed to $B_X(t)$ on the $X(t)$-lattice via:
 \[B_X(t) = \frac{1}{\sigma_S} (\ln B(t) - \ln S(0)). \]
- The lattice starts by placing gray nodes on the barrier to reduce the nonlinearity error.
- All the other nodes are then laid from the gray nodes upward and downward.
The second phase builds the $Y(t)$-lattice first.

$D^*(t)$ will be transformed to $D_Y^*(t)$ on the $Y(t)$-lattice via:

$$D_Y^*(t) = \left(\frac{\ln D^*(t) - \ln V(0) - \rho X(t)}{\sigma_Y \sqrt{1 - \rho^2}} \right)$$
The second phase builds the $Y(t)$-lattice first.

$D^*(t)$ will be transformed to $D_Y^*(t)$ on the $Y(t)$-lattice via:

$$D_Y^*(t) = \left(\frac{\ln D^*(t) - \ln V(0) - \rho X(t)}{\sigma_V \sqrt{1 - \rho^2}} \right)$$
Once we have $D_Y^\ast(t)$, the lattice starts by placing nodes on this default boundary (the black nodes).

In the end of the second phase, the $Y(t)$-lattice is added “on top of” the $X(t)$-lattice to form the bivariate lattice.
Once we have $D_Y^*(t)$, the lattice starts by placing nodes on this default boundary (the black nodes).

In the end of the second phase, the $Y(t)$-lattice is added “on top of” the $X(t)$-lattice to form the bivariate lattice.
A Bivariate Lattice: Stochastic Interest Rate as the Second Market Variable

- Two market variables: the interest rate, \(r(t) \), and the firm’s asset value, \(V(t) \).
 - \(V(t) \) is assumed to follow the lognormal diffusion processes.
 - \(r(t) \) is assumed to follow the Hull-White interest rate model.

- The bivariate lattice is built to price defaultable bonds with a positive net-worth covenant as the default boundary.
Two market variables: the interest rate, $r(t)$, and the firm’s asset value, $V(t)$.

- $V(t)$ is assumed to follow the lognormal diffusion processes.
- $r(t)$ is assumed to follow the Hull-White interest rate model.

The bivariate lattice is built to price defaultable bonds with a positive net-worth covenant as the default boundary.
A Bivariate Lattice: Stochastic Interest Rate as the Second Market Variable

- Two market variables: the interest rate, $r(t)$, and the firm’s asset value, $V(t)$.
 - $V(t)$ is assumed to follow the lognormal diffusion processes.
 - $r(t)$ is assumed to follow the Hull-White interest rate model.

- The bivariate lattice is built to price defaultable bonds with a positive net-worth covenant as the default boundary.
A Bivariate Lattice: Stochastic Interest Rate as the Second Market Variable

- Two market variables: the interest rate, $r(t)$, and the firm's asset value, $V(t)$.
 - $V(t)$ is assumed to follow the lognormal diffusion processes.
 - $r(t)$ is assumed to follow the Hull-White interest rate model.
- The bivariate lattice is built to price defaultable bonds with a positive net-worth covenant as the default boundary.
We first apply the orthogonalization process to obtain two uncorrelated process $X(t)$ and $Y(t)$.

$$
\begin{align*}
\frac{dX(t)}{\sigma_r} &= \frac{\theta(t) - ar(t)}{\sigma_r} dt + dz_r, \\
\frac{dY(t)}{\sqrt{1 - \rho^2}} &= \left(-\frac{\rho}{\sigma_V} (\theta(t) - ar(t)) + \frac{1}{\sigma_V} \left(r(t) - \frac{\sigma_V^2}{2} \right) \right) + dz,
\end{align*}
$$

where dz_r and dz are uncorrelated.

With $X(t)$ and $Y(t)$ in place, the construction procedure for the bivariate lattice follows that for the two correlated market variables.
We first apply the orthogonalization process to obtain two uncorrelated process \(X(t) \) and \(Y(t) \).

\[
\begin{align*}
 dX(t) &= \frac{\theta(t) - ar(t)}{\sigma_r} dt + dz_r, \\
 dY(t) &= \frac{1}{\sqrt{1 - \rho^2}} \left(-\frac{\rho}{\sigma_V} (\theta(t) - ar(t)) + \frac{1}{\sigma_V} \left(r(t) - \frac{\sigma_V^2}{2} \right) \right) + dz,
\end{align*}
\]

where \(dz_r \) and \(dz \) are uncorrelated.

With \(X(t) \) and \(Y(t) \) in place, the construction procedure for the bivariate lattice follows that for the two correlated market variables.
Pricing Vulnerable Vanilla Call Options

<table>
<thead>
<tr>
<th></th>
<th>Merton</th>
<th>FPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>$D + c(S(T), T)$</td>
</tr>
<tr>
<td>Formula</td>
<td>Lattice</td>
<td>Formula</td>
</tr>
<tr>
<td>Base case</td>
<td>7.44</td>
<td>7.41</td>
</tr>
<tr>
<td>$S = 30$</td>
<td>2.27</td>
<td>2.26</td>
</tr>
<tr>
<td>$S = 50$</td>
<td>14.75</td>
<td>14.69</td>
</tr>
<tr>
<td>$V = 90$</td>
<td>7.03</td>
<td>7.00</td>
</tr>
<tr>
<td>$V = 110$</td>
<td>7.74</td>
<td>7.71</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>8.06</td>
<td>8.04</td>
</tr>
<tr>
<td>$\rho = -0.5$</td>
<td>6.59</td>
<td>6.56</td>
</tr>
<tr>
<td>$\sigma_S = 0.15$</td>
<td>6.45</td>
<td>6.42</td>
</tr>
<tr>
<td>$\sigma_S = 0.25$</td>
<td>8.48</td>
<td>8.44</td>
</tr>
<tr>
<td>$\sigma_V = 0.15$</td>
<td>7.80</td>
<td>7.79</td>
</tr>
<tr>
<td>$\sigma_V = 0.25$</td>
<td>7.10</td>
<td>7.09</td>
</tr>
<tr>
<td>$T = 2$</td>
<td>5.79</td>
<td>5.77</td>
</tr>
<tr>
<td>$T = 4$</td>
<td>8.91</td>
<td>8.89</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>7.93</td>
<td>7.93</td>
</tr>
<tr>
<td>$\alpha = 0.5$</td>
<td>6.95</td>
<td>6.89</td>
</tr>
<tr>
<td>$r = 0.03$</td>
<td>6.17</td>
<td>6.14</td>
</tr>
<tr>
<td>$r = 0.07$</td>
<td>8.80</td>
<td>8.77</td>
</tr>
</tbody>
</table>

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Convergence of the Vulnerable Barrier Call Option

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables
Pricing Vulnerable Barrier Call Options

<table>
<thead>
<tr>
<th>B</th>
<th>Merton D</th>
<th>Merton D + c(S(T), T)</th>
<th>FPM De^{-r(T-t)}</th>
<th>FPM De^{-r(T-t)} + c(S(t), t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formula</td>
<td>Lattice</td>
<td>Lattice</td>
<td>Lattice</td>
</tr>
<tr>
<td>20</td>
<td>7.44</td>
<td>7.41</td>
<td>6.22</td>
<td>7.28</td>
</tr>
<tr>
<td>25</td>
<td>7.43</td>
<td>7.40</td>
<td>6.21</td>
<td>7.27</td>
</tr>
<tr>
<td>30</td>
<td>7.15</td>
<td>7.12</td>
<td>5.96</td>
<td>6.99</td>
</tr>
<tr>
<td>35</td>
<td>5.39</td>
<td>5.37</td>
<td>4.41</td>
<td>5.27</td>
</tr>
<tr>
<td>40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Constant barrier

<table>
<thead>
<tr>
<th>B</th>
<th>Merton D</th>
<th>Merton D + c(S(T), T)</th>
<th>FPM De^{-r(T-t)}</th>
<th>FPM De^{-r(T-t)} + c(S(t), t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formula</td>
<td>Lattice</td>
<td>Lattice</td>
<td>Lattice</td>
</tr>
<tr>
<td>20</td>
<td>7.44</td>
<td>7.41</td>
<td>6.22</td>
<td>7.28</td>
</tr>
<tr>
<td>25</td>
<td>7.44</td>
<td>7.41</td>
<td>6.22</td>
<td>7.28</td>
</tr>
<tr>
<td>30</td>
<td>7.38</td>
<td>7.35</td>
<td>6.17</td>
<td>7.22</td>
</tr>
<tr>
<td>35</td>
<td>6.93</td>
<td>6.90</td>
<td>5.75</td>
<td>6.78</td>
</tr>
<tr>
<td>40</td>
<td>5.37</td>
<td>5.35</td>
<td>4.38</td>
<td>5.25</td>
</tr>
</tbody>
</table>

Exponential barrier (γ = 0.06)
Evaluating Defaultable Bonds under Short Rate Models

Defaultable Zero Bonds with an Exogenous Default Boundary

<table>
<thead>
<tr>
<th>Face value (F)</th>
<th>Lattice</th>
<th>Formula(^6)</th>
<th>Relative errors</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1924.8</td>
<td>1924.8</td>
<td>$-0.002%$</td>
<td>1925.0</td>
</tr>
<tr>
<td>2500</td>
<td>2404.0</td>
<td>2404.4</td>
<td>$-0.015%$</td>
<td>2406.2</td>
</tr>
<tr>
<td>3000</td>
<td>2874.9</td>
<td>2876.2</td>
<td>$-0.045%$</td>
<td>2887.4</td>
</tr>
</tbody>
</table>

Different Payment Frequencies, Asset Sales Assumptions, and Default Boundaries

<table>
<thead>
<tr>
<th>Payment frequency (per year)</th>
<th>Total-asset-sales $\xi = 0.9$</th>
<th>$\xi = 0$</th>
<th>No-asset-sales $\xi = 0.9$</th>
<th>$\xi = 0$</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuously</td>
<td>3017.6</td>
<td>3014.6</td>
<td>3021.4</td>
<td>3019.9</td>
<td>3034.8</td>
</tr>
<tr>
<td>4</td>
<td>3016.5</td>
<td>3013.4</td>
<td>3019.7</td>
<td>3017.7</td>
<td>3034.1</td>
</tr>
<tr>
<td>2</td>
<td>3015.3</td>
<td>3012.2</td>
<td>3017.7</td>
<td>3015.3</td>
<td>3033.4</td>
</tr>
<tr>
<td>1</td>
<td>3012.8</td>
<td>3009.5</td>
<td>3012.8</td>
<td>3009.5</td>
<td>3031.8</td>
</tr>
</tbody>
</table>

Call/ Put prices

<table>
<thead>
<tr>
<th>Call/ Put prices</th>
<th>Callable bonds</th>
<th>Putable bonds</th>
<th>Straight bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defaultable</td>
<td>Default-free</td>
<td>Defaultable</td>
</tr>
<tr>
<td>3030</td>
<td>3016.6</td>
<td>3029.4</td>
<td>3063.6</td>
</tr>
<tr>
<td>3035</td>
<td>3017.2</td>
<td>3033.0</td>
<td>3068.4</td>
</tr>
<tr>
<td>3040</td>
<td>3017.5</td>
<td>3034.4</td>
<td>3073.2</td>
</tr>
<tr>
<td>3050</td>
<td>3017.6</td>
<td>3034.8</td>
<td>3082.9</td>
</tr>
</tbody>
</table>

\(\text{\footnotesize{Briys and De Varenne (1997).}}\)
Evaluating Defaultable Bonds under Short Rate Models

<table>
<thead>
<tr>
<th>Face value (F)</th>
<th>Lattice</th>
<th>Formula (^6)</th>
<th>Relative errors</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1924.8</td>
<td>1924.8</td>
<td>−0.002%</td>
<td>1925.0</td>
</tr>
<tr>
<td>2500</td>
<td>2404.0</td>
<td>2404.4</td>
<td>−0.015%</td>
<td>2406.2</td>
</tr>
<tr>
<td>3000</td>
<td>2874.9</td>
<td>2876.2</td>
<td>−0.045%</td>
<td>2887.4</td>
</tr>
</tbody>
</table>

Different Payment Frequencies, Asset Sales Assumptions, and Default Boundaries

<table>
<thead>
<tr>
<th>Payment frequency (per year)</th>
<th>Total-asset-sales</th>
<th>No-asset-sales</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\xi = 0.9$ $\xi = 0$</td>
<td>$\xi = 0.9$ $\xi = 0$</td>
<td></td>
</tr>
<tr>
<td>Continuously</td>
<td>3017.6 3014.6</td>
<td>3021.4 3019.9</td>
<td>3034.8</td>
</tr>
<tr>
<td>4</td>
<td>3016.5 3013.4</td>
<td>3019.7 3017.7</td>
<td>3034.1</td>
</tr>
<tr>
<td>2</td>
<td>3015.3 3012.2</td>
<td>3017.7 3015.3</td>
<td>3033.4</td>
</tr>
<tr>
<td>1</td>
<td>3012.8 3009.5</td>
<td>3012.8 3009.5</td>
<td>3031.8</td>
</tr>
</tbody>
</table>

Call/ Put prices | Callable bonds | Putable bonds | Straight bonds |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defaultable</td>
<td>Default-free</td>
<td>Defaultable</td>
</tr>
<tr>
<td>3030</td>
<td>3016.6</td>
<td>3029.4</td>
<td>3063.6</td>
</tr>
<tr>
<td>3035</td>
<td>3017.2</td>
<td>3033.0</td>
<td>3068.4</td>
</tr>
<tr>
<td>3040</td>
<td>3017.5</td>
<td>3034.4</td>
<td>3073.2</td>
</tr>
<tr>
<td>3050</td>
<td>3017.6</td>
<td>3034.8</td>
<td>3082.9</td>
</tr>
</tbody>
</table>

\(^6\)Briys and De Varenne (1997).
Evaluating Defaultable Bonds under Short Rate Models

<table>
<thead>
<tr>
<th>Face value ((F))</th>
<th>Lattice</th>
<th>Formula(^6)</th>
<th>Relative errors</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1924.8</td>
<td>1924.8</td>
<td>−0.002%</td>
<td>1925.0</td>
</tr>
<tr>
<td>2500</td>
<td>2404.0</td>
<td>2404.4</td>
<td>−0.015%</td>
<td>2406.2</td>
</tr>
<tr>
<td>3000</td>
<td>2874.9</td>
<td>2876.2</td>
<td>−0.045%</td>
<td>2887.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payment frequency ((\xi))</th>
<th>Total-asset-sales</th>
<th>No-asset-sales</th>
<th>Default-free bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi = 0.9)</td>
<td>(\xi = 0)</td>
<td>(\xi = 0)</td>
<td></td>
</tr>
<tr>
<td>Continuously</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3017.6</td>
<td>3014.6</td>
<td>3034.8</td>
</tr>
<tr>
<td>2</td>
<td>3015.3</td>
<td>3012.2</td>
<td>3033.4</td>
</tr>
<tr>
<td>1</td>
<td>3012.8</td>
<td>3009.5</td>
<td>3031.8</td>
</tr>
</tbody>
</table>

Call/ Put prices | Callable bonds | Putable bonds | Straight bonds |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3030</td>
<td>3016.6</td>
<td>3063.6</td>
<td>3017.6</td>
</tr>
<tr>
<td>3035</td>
<td>3017.2</td>
<td>3068.4</td>
<td>3017.6</td>
</tr>
<tr>
<td>3040</td>
<td>3017.5</td>
<td>3073.2</td>
<td>3017.6</td>
</tr>
<tr>
<td>3050</td>
<td>3017.6</td>
<td>3082.9</td>
<td>3017.6</td>
</tr>
</tbody>
</table>

\(^6\)Briys and De Varenne (1997).
Evaluating GMWBs under Short Rate Models

- The insurance contract, guaranteed minimum withdrawal benefit (GMWB), allows the insurer to withdraw a fixed amount of money from the insurer’s account at withdrawal dates.
 - This covenant results in a downward jump of the value of the insurer’s account.

- The bivariate lattice for evaluating defaultable bonds can be extended to evaluate GMWBs by replacing the firm’s asset value with the policy holder’s account value.

<table>
<thead>
<tr>
<th>T</th>
<th>$\rho = -0.2$</th>
<th>$\rho = 0$</th>
<th>$\rho = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.43</td>
<td>141.85</td>
<td>142.48</td>
</tr>
<tr>
<td>5</td>
<td>42.94</td>
<td>44.21</td>
<td>45.32</td>
</tr>
<tr>
<td>10</td>
<td>19.07</td>
<td>20.13</td>
<td>21.15</td>
</tr>
<tr>
<td>20</td>
<td>7.73</td>
<td>8.48</td>
<td>9.21</td>
</tr>
<tr>
<td>25</td>
<td>5.61</td>
<td>6.25</td>
<td>6.86</td>
</tr>
</tbody>
</table>
Evaluating GMWBs under Short Rate Models

- The insurance contract, guaranteed minimum withdrawal benefit (GMWB), allows the insurer to withdraw a fixed amount of money from the insurer’s account at withdrawal dates.
 - This covenant results in a downward jump of the value of the insurer’s account.
- The bivariate lattice for evaluating defaultable bonds can be extended to evaluate GMWBs by replacing the firm’s asset value with the policy holder’s account value.

<table>
<thead>
<tr>
<th>T</th>
<th>$\rho = -0.2$</th>
<th>$\rho = 0$</th>
<th>$\rho = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.43</td>
<td>141.85</td>
<td>142.48</td>
</tr>
<tr>
<td>5</td>
<td>42.94</td>
<td>44.21</td>
<td>45.32</td>
</tr>
<tr>
<td>10</td>
<td>19.07</td>
<td>20.13</td>
<td>21.15</td>
</tr>
<tr>
<td>20</td>
<td>7.73</td>
<td>8.48</td>
<td>9.21</td>
</tr>
<tr>
<td>25</td>
<td>5.61</td>
<td>6.25</td>
<td>6.86</td>
</tr>
</tbody>
</table>
Evaluating GMWBs under Short Rate Models

- The insurance contract, guaranteed minimum withdrawal benefit (GMWB), allows the insurer to withdraw a fixed amount of money from the insurer’s account at withdrawal dates.

- This covenant results in a downward jump of the value of the insurer’s account.

- The bivariate lattice for evaluating defaultable bonds can be extended to evaluate GMWBs by replacing the firm’s asset value with the policy holder’s account value.

<table>
<thead>
<tr>
<th>T</th>
<th>$\rho = -0.2$</th>
<th>$\rho = 0$</th>
<th>$\rho = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.43</td>
<td>141.85</td>
<td>142.48</td>
</tr>
<tr>
<td>5</td>
<td>42.94</td>
<td>44.21</td>
<td>45.32</td>
</tr>
<tr>
<td>10</td>
<td>19.07</td>
<td>20.13</td>
<td>21.15</td>
</tr>
<tr>
<td>20</td>
<td>7.73</td>
<td>8.48</td>
<td>9.21</td>
</tr>
<tr>
<td>25</td>
<td>5.61</td>
<td>6.25</td>
<td>6.86</td>
</tr>
</tbody>
</table>
Evaluating GMWBs under Short Rate Models

- The insurance contract, guaranteed minimum withdrawal benefit (GMWB), allows the insurer to withdraw a fixed amount of money from the insurer’s account at withdrawal dates.
 - This covenant results in a downward jump of the value of the insurer’s account.
- The bivariate lattice for evaluating defaultable bonds can be extended to evaluate GMWBs by replacing the firm’s asset value with the policy holder’s account value.

<table>
<thead>
<tr>
<th>T</th>
<th>$\rho = -0.2$</th>
<th>$\rho = 0$</th>
<th>$\rho = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.43</td>
<td>141.85</td>
<td>142.48</td>
</tr>
<tr>
<td>5</td>
<td>42.94</td>
<td>44.21</td>
<td>45.32</td>
</tr>
<tr>
<td>10</td>
<td>19.07</td>
<td>20.13</td>
<td>21.15</td>
</tr>
<tr>
<td>20</td>
<td>7.73</td>
<td>8.48</td>
<td>9.21</td>
</tr>
<tr>
<td>25</td>
<td>5.61</td>
<td>6.25</td>
<td>6.86</td>
</tr>
</tbody>
</table>
This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

To simultaneously handle the correlations and make the lattice match the critical locations:

1. The market variables are first properly ordered.
2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

A multivariate lattice is then built for the transformed, uncorrelated processes.

Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.
This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

To simultaneously handle the correlations and make the lattice match the critical locations:

1. The market variables are first properly ordered.
2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

A multivariate lattice is then built for the transformed, uncorrelated processes.

Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.
This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

To simultaneously handle the correlations and make the lattice match the critical locations:

1. The market variables are first properly ordered.
2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

A multivariate lattice is then built for the transformed, uncorrelated processes.

Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.
This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

To simultaneously handle the correlations and make the lattice match the critical locations:

1. The market variables are first properly ordered.
2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

A multivariate lattice is then built for the transformed, uncorrelated processes.

Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.
This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

To simultaneously handle the correlations and make the lattice match the critical locations:

1. The market variables are first properly ordered.
2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

A multivariate lattice is then built for the transformed, uncorrelated processes.

Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.
Conclusions

- This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.

- To simultaneously handle the correlations and make the lattice match the critical locations:
 1. The market variables are first properly ordered.
 2. Then the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.

- A multivariate lattice is then built for the transformed, uncorrelated processes.

- Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.