On the Asymptotic analysis and the existence of Time Periodic Solutions of the primitive equations

Chun-Hsiung Hsia

National Taiwan University

joint work with Ming-Cheng Shiue

October 11, 2012
1922 Richardson
1992 Lions, Temam and Wang
2006 Kobelkov
2007 Cao and Titi
2007 Ju
2010 Tachim
1922 Richardson
1992 Lions, Temam and Wang
2006 Kobelkov
2007 Cao and Titi
2007 Ju
2010 Tachim
1922 Richardson
1992 Lions, Temam and Wang
2006 Kobelkov
2007 Cao and Titi
2007 Ju
2010 Tachim
1922 Richardson
1992 Lions, Temam and Wang
2006 Kobelkov
2007 Cao and Titi
2007 Ju
2010 Tachim
On the Asymptotic analysis and the existence of Time Periodic Solutions of the primitive equations

1. 1922 Richardson
2. 1992 Lions, Temam and Wang
3. 2006 Kobelkov
4. 2007 Cao and Titi
5. 2007 Ju
6. 2010 Tachim
Reynolds number $Vd/\nu < 5.71$ asymptotic stable.

1. the forcing term is time-periodic with period T, and
2. there exists a flow with Reynolds number less than 5.71 and this flow is equicontinuous in space variable for all time.
Reynolds number $Vd/\nu < 5.71$ asymptotically stable.

1. the forcing term is time-periodic with period T, and
2. there exists a flow with Reynolds number less than 5.71 and this flow is equicontinuous in space variable for all time.
The Primitive Equation

\[
\begin{align*}
 &\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + w \frac{\partial \mathbf{v}}{\partial z} + f \mathbf{v}^\perp + \nabla p = \nu_1 \Delta \mathbf{v} + \mu_1 \frac{\partial^2 \mathbf{v}}{\partial z^2} + F_1 \\
 &\frac{\partial p}{\partial z} = -\theta \\
 &\nabla \cdot \mathbf{v} + \frac{\partial w}{\partial z} = 0 \\
 &\frac{\partial \theta}{\partial t} + (\mathbf{v} \cdot \nabla) \theta + w \frac{\partial \theta}{\partial z} = \nu_2 \Delta \theta + \mu_2 \frac{\partial^2 \theta}{\partial z^2} + F_2
\end{align*}
\]
The Primitive Equation

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + w \frac{\partial \mathbf{v}}{\partial z} + f \mathbf{v}^\perp + \nabla p = \nu_1 \Delta \mathbf{v} + \mu_1 \frac{\partial^2 \mathbf{v}}{\partial z^2} + F_1
\]

\[
\frac{\partial p}{\partial z} = -\theta
\]

\[
\nabla \cdot \mathbf{v} + \frac{\partial w}{\partial z} = 0
\]

\[
\frac{\partial \theta}{\partial t} + (\mathbf{v} \cdot \nabla) \theta + w \frac{\partial \theta}{\partial z} = \nu_2 \Delta \theta + \mu_2 \frac{\partial^2 \theta}{\partial z^2} + F_2
\]
The Primitive Equation

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + w \frac{\partial \mathbf{v}}{\partial z} + f \mathbf{v}^\perp + \nabla p = \nu_1 \Delta \mathbf{v} + \mu_1 \frac{\partial^2 \mathbf{v}}{\partial z^2} + F_1
\]

\[
\frac{\partial p}{\partial z} = -\theta
\]

\[
\nabla \cdot \mathbf{v} + \frac{\partial w}{\partial z} = 0
\]

\[
\frac{\partial \theta}{\partial t} + (\mathbf{v} \cdot \nabla) \theta + w \frac{\partial \theta}{\partial z} = \nu_2 \Delta \theta + \mu_2 \frac{\partial^2 \theta}{\partial z^2} + F_2
\]
The Primitive Equation

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + w \frac{\partial \mathbf{v}}{\partial z} + f \mathbf{v}^\perp + \nabla p = \nu_1 \Delta \mathbf{v} + \mu_1 \frac{\partial^2 \mathbf{v}}{\partial z^2} + F_1
\]

\[
\frac{\partial p}{\partial z} = -\theta
\]

\[
\nabla \cdot \mathbf{v} + \frac{\partial w}{\partial z} = 0
\]

\[
\frac{\partial \theta}{\partial t} + (\mathbf{v} \cdot \nabla) \theta + w \frac{\partial \theta}{\partial z} = \nu_2 \Delta \theta + \mu_2 \frac{\partial^2 \theta}{\partial z^2} + F_2
\]
Cylinderical domain

\[\mathcal{M} = \mathcal{M}' \times (-h, 0), \]

Boundary Condition

\[\Gamma_u : \frac{\partial v}{\partial z} = 0, \ w = 0, \ \frac{\partial \theta}{\partial z} + \alpha \theta = 0, \]

\[\Gamma_b : \frac{\partial v}{\partial z} = 0, \ w = 0, \ \frac{\partial \theta}{\partial z} = 0, \]

\[\Gamma_l : v \cdot \vec{n} = 0, \ \frac{\partial v}{\partial \vec{n}} \times \vec{n} = 0, \ \theta = 0. \]
Cylindrical domain

\[\mathcal{M} = \mathcal{M}' \times (-h, 0), \]

Boundary Condition

\[\Gamma_u : \frac{\partial v}{\partial z} = 0, \ w = 0, \ \frac{\partial \theta}{\partial z} + \alpha \theta = 0, \]

\[\Gamma_b : \frac{\partial v}{\partial z} = 0, \ w = 0, \ \frac{\partial \theta}{\partial z} = 0, \]

\[\Gamma_l : v \cdot \vec{n} = 0, \ \frac{\partial v}{\partial \vec{n}} \times \vec{n} = 0, \ \theta = 0. \]
\(H = H_1 \times H_2, \quad V = V_1 \times V_2, \)

\[
H_1 = \left\{ \mathbf{v} \in (L^2(M))^2 : \int_{-h}^{0} \nabla \cdot \mathbf{v} \, dz = 0, \quad \mathbf{v} \cdot \vec{n} = 0, \text{ on } \Gamma_1 \right\},
\]

\[
V_1 = \left\{ \mathbf{v} \in (H^1(M))^2 : \int_{-h}^{0} \nabla \cdot \mathbf{v} \, dz = 0, \quad \mathbf{v} \cdot \vec{n} = 0, \text{ on } \Gamma_1 \right\},
\]

\[
H_2 = L^2(M), \quad V_2 = H^1(M).
\]
Cao-Titi, Kobelkov (2006)

Let $F_1 = 0$, $F_2 \in H^1(M)$, $(v_0, \theta_0) \in V_1 \times V_2$ and $T > 0$, then there exists a unique strong solution (v, θ) to the system of 3D viscous Primitive equations on the interval $[0, T]$, which depends on the initial data continuously in $H_1 \times H_2$.
Medjo (2010)

\[M_1 = \int_0^T \left| \frac{dF_2(t)}{dt} \right|^2_{L^2} dt. \]

\[\sup |F(t)|_{L^2} \leq M \]

Set \(F_1(t) \equiv 0 \) and suppose \(F_2(t) = F_2(t + T) \). There exists a unique positive time periodic strong solution (with period \(T \)) of the primitive equation.
Reformulation of w and p

\[w(x, y, z, t) = - \int_{-h}^{z} \nabla \cdot \mathbf{v}(x, y, \xi, t) \, d\xi \]

\[p(x, y, z, t) = p_0(x, y, t) - \int_{-h}^{z} \theta(x, y, \xi, t) \, d\xi \]
Integral differential equation

\[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \left(\int_{-h}^{z} \nabla \cdot \mathbf{v}(x, y, \xi, t) \, d\xi \right) \frac{\partial \mathbf{v}}{\partial z} + f \mathbf{v}^\perp \]

\[+ \nabla p_0 - \nabla \left(\int_{-h}^{z} \theta(x, y, \xi, t) \, d\xi \right) = \nu_1 \triangle \mathbf{v} + \mu_1 \frac{\partial^2 \mathbf{v}}{\partial z^2} + F_1, \]

\[\frac{\partial \theta}{\partial t} + (\mathbf{v} \cdot \nabla) \theta - \left(\int_{-h}^{z} \nabla \cdot \mathbf{v}(x, y, \xi, t) \, d\xi \right) \frac{\partial \theta}{\partial z} \]

\[= \nu_2 \triangle \theta + \mu_2 \frac{\partial^2 \theta}{\partial z^2} + F_2, \]

\[\left. \frac{\partial \mathbf{v}}{\partial z} \right|_{\Gamma_u} = \left. \frac{\partial \mathbf{v}}{\partial z} \right|_{\Gamma_b} = 0, \quad \mathbf{v} \cdot \mathbf{n} \bigg|_{\Gamma_l} = 0, \quad \left. \frac{\partial \mathbf{v}}{\partial \mathbf{n}} \times \mathbf{n} \right|_{\Gamma_l} = 0, \]

\[\left. \frac{\partial \theta}{\partial z} \right|_{\Gamma_u} = \left. \frac{\partial \theta}{\partial z} \right|_{\Gamma_b} = 0, \quad \left. \frac{\partial \theta}{\partial \mathbf{n}} \right|_{\Gamma_l} = 0. \]
\[\bar{v} = \frac{1}{h} \int_{-h}^{0} v(x, y, z, t) \, dz, \]
\[\tilde{v} = v - \bar{v}. \]
\[
\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla)\bar{v} + (\tilde{v} \cdot \nabla)\tilde{v} + (\nabla \cdot \tilde{v})\tilde{v} + f\tilde{v}^\perp \\
+ \nabla p_0 - \int_{-h}^{z} \nabla \theta(x, y, \xi, t) \, d\xi = \nu_1 \Delta \bar{v} + \bar{F}_1,
\]
\[\nabla \cdot \bar{v} = 0,\]
\[\bar{v} \cdot \vec{n} |_{\partial \mathcal{M}'} = 0, \quad \frac{\partial \bar{v}}{\partial \vec{n}} \times \vec{n} |_{\partial \mathcal{M}'} = 0,\]
Perturbation

\[
\begin{align*}
\frac{\partial \tilde{v}}{\partial t} + (\tilde{v} \cdot \nabla)\tilde{v} - (\int_{-h}^{z} \nabla \cdot \tilde{v}(x, y, \xi, t) \, d\xi) \frac{\partial \tilde{v}}{\partial z} \\
&+ (\tilde{v} \cdot \nabla)\tilde{v} + (\bar{v} \cdot \nabla)\tilde{v} - (\tilde{v} \cdot \nabla)\tilde{v} + (\nabla \cdot \tilde{v})\tilde{v} + f \tilde{v} \perp \\
&- \int_{-h}^{z} \nabla \theta(x, y, \xi, t) \, d\xi + \int_{-h}^{z} \nabla \theta(x, y, \xi, t) \, d\xi \\
&= \nu_1 \Delta \tilde{v} + \mu_1 \frac{\partial^2 \tilde{v}}{\partial z^2} + \tilde{F}_1,
\end{align*}
\]

\[
\begin{align*}
\left. \frac{\partial \tilde{v}}{\partial z} \right|_{\Gamma_u} = \left. \frac{\partial \tilde{v}}{\partial z} \right|_{\Gamma_b} = 0, & \quad \tilde{v} \cdot \hat{n} \bigg|_{\partial \Gamma_l} = 0, \\
\left. \frac{\partial \tilde{v}}{\partial \hat{n} \times \hat{n}} \right|_{\partial \Gamma_l} = 0.
\end{align*}
\]
Theorem 1

Let $F \in L^\infty(0, T; L^2(M)^3)$, $\partial F/\partial z \in L^\infty(0, T; L^2(M)^3)$, $(v_0, \theta_0) \in V_1 \times V_2$, $\partial v_0/\partial z \in L^4(M)^2$, $\partial \theta_0/\partial z \in L^4(M)$, and $T > 0$. Then there exists a unique strong solution (v, θ) to the system of 3D viscous Primitive equations on the interval $[0, T]$ with $\partial v/\partial z \in L^2(0, T; L^4(M)^2)$ and $\partial \theta/\partial z \in L^2(0, T; L^4(M))$.
Asymptotic stability

Suppose \(F = (F_1, F_2), \partial F/\partial z \in L^\infty(0, \infty; (L^2(\mathcal{M}))^3) \). There exists a positive number \(\tilde{\gamma}_2 \) such that if

\[
|F|_{L^\infty(0, \infty; (L^2(\mathcal{M}))^3)}^2 + \left| \frac{\partial F}{\partial z} \right|_{L^\infty(0, \infty; (L^2(\mathcal{M}))^3)}^2 \leq \tilde{\gamma}_2, \tag{1}
\]

then for any two strong solutions \((\mathbf{v}_1(t), \theta_1(t)) \) and \((\mathbf{v}_2(t), \theta_2(t)) \) of the primitive equations, we have

\[
\lim_{t \to \infty} \left(|\mathbf{v}_1(t) - \mathbf{v}_2(t)|_{L^2}^2 + |\theta_1(t) - \theta_2(t)|_{L^2}^2 \right) = 0. \tag{2}
\]

The convergence rate in (2) is exponential.
Let $F = (F_1, F_2) \in L^\infty(0, \infty; (L^2(M))^3)$ and
$\partial F/\partial z \in L^\infty(0, \infty; L^2(M)^3)$ be nontrivial and periodic in time with period T. Assume that $|F|_{L^\infty(0,\infty;(L^2(M))^3)}$ and $|\partial F/\partial z|_{L^\infty(0,\infty;(L^2(M))^3)}$ are small enough, then there exists a time periodic strong solution (ν, θ) to the primitive equation. Moreover, any other strong solution tends to this time-periodic solution asymptotically in L^2 sense.
Lemma

Assumption:

\[|\mathbf{v}_0|^2_{H^1} + |\theta_0|^2_{H^1} + |\frac{\partial \mathbf{v}_0}{\partial z}|^2_{L^4} + |\frac{\partial \theta_0}{\partial z}|^2_{L^4} \leq \gamma_1, \]
\[|F|^2_{L^\infty(0,\infty;(L^2(M))^3)} + |\frac{\partial F}{\partial z}|^2_{L^\infty(0,\infty;(L^2(M))^2)} \leq \gamma_2, \]

then we have

\[
\sup_{t \geq 0} \left\{ |\mathbf{v}(t)|^2_{H^1} + |\theta(t)|^2_{H^1} + \left| \frac{\partial \mathbf{v}(t)}{\partial z} \right|^2_{L^4} + \left| \frac{\partial \theta(t)}{\partial z} \right|^2_{L^4} \right\} \leq C(\gamma_1, \gamma_2),
\]

(3)

\[C(\gamma_1, \gamma_2) \downarrow 0 \text{ as } \gamma_1 + \gamma_2 \downarrow 0. \]
Sketch of Proof for the Main Theorem

Step 1. Let

\[\delta = \frac{\min\{\nu_1, \mu_1, \nu_2, \mu_2, \mu_2 \alpha \}}{8(1 + 2h + 2h^2 + c^*_1)}. \]

Choose \(\gamma_1 \) and \(\gamma_2 \) small enough so that the constant \(C(\gamma_1, \gamma_2) \) in the Lemma satisfies

\[C(\gamma_1, \gamma_2) < \frac{\delta^4}{4c^*_2 \left(\frac{h^2}{\nu_1} + \delta \right)^2}. \]

Let \((v'(x, y, z, t), \theta'(x, y, z, t))\) the solution with initial condition \((v_0, \theta_0)\), where \((v_0, \theta_0)\) satisfies the assumption in the Lemma. For another solution \((v''(x, y, z, t), \theta''(x, y, z, t))\), we define

\[(\tilde{u}, \eta) = (v'', \theta'') - (v', \theta'). \]
The difference
\((\tilde{u}, \eta)\) satisfies

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} - \left(\int_{-h}^{z} (\nabla \cdot \tilde{u}) \, d\xi \right) \frac{\partial \tilde{u}}{\partial z} + f k \times \tilde{u} \\
+ (\tilde{u} \cdot \nabla) v' + (v' \cdot \nabla) \tilde{u} - \left(\int_{-h}^{z} (\nabla \cdot v') \, d\xi \right) \frac{\partial \tilde{u}}{\partial z} \\
- \left(\int_{-h}^{z} (\nabla \cdot \tilde{u}) \, d\xi \right) \frac{\partial v'}{\partial z} - \int_{-h}^{z} \nabla \eta \, d\xi = \nu_1 \Delta \tilde{u} + \mu_1 \frac{\partial^2 \tilde{u}}{\partial z^2}.
\]

\[
\frac{\partial \eta}{\partial t} + (\tilde{u} \cdot \nabla)(\theta' + \eta) - \left(\int_{-h}^{z} \nabla \cdot \tilde{u} \, d\xi \right) \frac{\partial (\theta' + \eta)}{\partial z} + (v' \cdot \nabla) \eta \\
- \left(\int_{-h}^{z} \nabla \cdot v' \, d\xi \right) \frac{\partial \eta}{\partial z} = \nu_2 \Delta \eta + \mu_2 \frac{\partial^2 \eta}{\partial z^2},
\]
\[\int_{-h}^{0} \nabla \cdot \tilde{u} \, d\xi = 0, \]
\[\frac{\partial \tilde{u}}{\partial z}|_{\Gamma_u} = \frac{\partial \tilde{u}}{\partial z}|_{\Gamma_b} = 0, \quad \tilde{u} \cdot \vec{n}|_{\Gamma_l} = 0, \quad \frac{\partial \tilde{u}}{\partial z} \times \vec{n}|_{\Gamma_l} = 0, \]
\[\frac{\partial \eta}{\partial z}|_{\Gamma_u} = \frac{\partial \eta}{\partial z}|_{\Gamma_b} = 0, \quad \frac{\partial \eta}{\partial n}|_{\Gamma_l} = 0. \]
Taking the L^2 inner product of (\tilde{u}, η) with the difference equation, we obtain

\[
\frac{1}{2} \frac{d}{dt} |\tilde{u}|^2_{L^2} + \nu_1 |\nabla \tilde{u}|^2_{L^2} + \mu_1 \left| \frac{\partial \tilde{u}}{\partial z} \right|^2_{L^2} \\
= -b(\tilde{u}, \nu', \tilde{u}) + \int_{M} \left(\int_{-h}^{z} \nabla \eta \, d\xi \right) \tilde{u} \, dM,
\]

\[
\frac{1}{2} \frac{d}{dt} |\eta|^2_{L^2} + \nu_2 |\nabla \eta|^2_{L^2} + \mu_2 |\eta_z|^2_{L^2} = -b(\tilde{u}, \theta', \eta).
\]
\[|b(\tilde{u}, v', \tilde{u})| = |\int_M (\tilde{u} \cdot \nabla) v' \cdot \tilde{u} \, dM - \int_M (\int_{-h}^{\tilde{z}} \nabla \cdot \tilde{u} \, d\xi) \frac{\partial v'}{\partial z} \cdot \tilde{u} \, dM| \]

\[\leq \int_M |\tilde{u}| |v'| |\nabla \tilde{u}| \, dM + \int_M |\nabla \cdot \tilde{u}|_{L^2} (z) |\frac{\partial v'}{\partial z}| |\tilde{u}| \, dM \]

\[\leq |\nabla \tilde{u}|_{L^2} |v'|_{L^3} |\tilde{u}|_{L^6} + c |\nabla \tilde{u}|_{L^2} |\frac{\partial v'}{\partial z}|_{L^4} |\tilde{u}|_{L^4} \]

\[\leq (\text{By Sobolev and Ladyzhenskaya's inequalities in } \mathbb{R}^3) \]

\[\leq c |v'|_{L^2}^{1/2} |v'|_{H^1}^{1/2} |\nabla \tilde{u}|_{L^2} |\tilde{u}|_{H^1} + c |\nabla \tilde{u}|_{L^2} |\frac{\partial v'}{\partial z}|_{L^4} |\tilde{u}|_{L^4} \]

\[\leq C(\gamma_1, \gamma_2) (|\nabla \tilde{u}|_{L^2}^2 + |\frac{\partial \tilde{u}}{\partial z}|_{L^2}^2) \]
\[|b(\tilde{u}, \theta', \eta)| = \left| \int_{\mathcal{M}} \tilde{u} \cdot (\nabla \theta') \eta \, d\mathcal{M} - \int_{\mathcal{M}} (\int_{-h}^z \nabla \cdot \tilde{u} \, d\xi) \frac{\partial \theta'}{\partial z} \eta \, d\mathcal{M} \right| \]

\[\leq \int_{\mathcal{M}} |\tilde{u}| \|\nabla \theta'| \| \eta\| \, d\mathcal{M} + c \int_{\mathcal{M}} \|\nabla \cdot \tilde{u}\|_{L^2(z)} \| \frac{\partial \theta'}{\partial z}\| \| \eta\| \, d\mathcal{M} \]

\[\leq |\tilde{u}|_{L^3} \|\nabla \theta'|_{L^2} \| \eta\|_{L^6} + c |\nabla \tilde{u}|_{L^2} \| \frac{\partial \theta'}{\partial z}\|_{L^3} \| \eta\|_{L^6} \]

\[\leq (\text{By Sobolev and Ladyzhenskaya's inequalities in } \mathbb{R}^3) \]

\[\leq |\tilde{u}|^{1/2} \|\tilde{u}\|^{1/2}_{H^1} \|\nabla \theta'|_{L^2} \| \eta\|_{H^1} + c |\nabla \tilde{u}|_{L^2} \| \frac{\partial \theta'}{\partial z}\|_{L^4} \| \eta\|_{H^1} \]

\[\leq C'(\gamma_1, \gamma_2) \left(|\nabla \tilde{u}|_{L^2}^2 + |\nabla \eta|_{L^2}^2 + |\frac{\partial \eta}{\partial z}|_{L^2}^2 \right) \]
\[
\left| \int_{\mathcal{M}} \left(\int_{-h}^{z} \nabla \eta \, d\xi \right) \tilde{u} \, dM \right| \leq h|\eta|_{L^2} |\nabla \tilde{u}|_{L^2} \leq \frac{\nu_1}{2} |\nabla \tilde{u}|_{L^2}^2 + c|\eta|_{L^2}^2
\]

where \(c \) depends on \(h \) and \(\nu_1 \).
\[\frac{d}{dt} |\tilde{u}|_{L^2}^2 + \delta (|\nabla \tilde{u}|_{L^2}^2 + |\frac{\partial \tilde{u}}{\partial z}|_{L^2}^2) \leq c |\eta|_{L^2}^2, \]

\[\frac{d}{dt} |\eta|_{L^2}^2 + 2\delta (|\nabla \eta|_{L^2}^2 + |\frac{\partial \eta}{\partial z}|_{L^2}^2) \leq C(\gamma_1, \gamma_2) |\nabla \tilde{u}|_{L^2}^2, \]
\[
|\tilde{u}(t)|_{L^2}^2 + \delta e^{-\delta t} \int_0^t e^{\delta s} (|\nabla \tilde{u}|_{L^2}^2 + |\frac{\partial \tilde{u}}{\partial z}|_{L^2}^2) \, ds \\
\leq e^{-\delta t} |u(0)|_{L^2}^2 + ce^{-\delta t} \int_0^t e^{\delta s} |\eta|_{L^2}^2 \, ds,
\]

\[
|\eta(t)|_{L^2}^2 \leq e^{-2\delta t} |\eta(0)|_{L^2}^2 + C(\gamma_1, \gamma_2)e^{-2\delta t} \int_0^t e^{2\delta s} |\nabla \tilde{u}|_{L^2}^2 \, ds.
\]

\[
|\tilde{u}|_{L^2}^2 + |\eta(t)|_{L^2}^2 \leq e^{-\delta t} |\tilde{u}(0)|_{L^2}^2 + \left(e^{-2\delta t} + \frac{ce^{-\delta_1 t}}{\delta} \right) |\eta(0)|_{L^2}^2. \tag{4}
\]
Now, set for $m > k$,

\[v''(x, y, z, t) = v'(x, y, z, t + (m - k)T), \quad \theta''(x, y, z, t) = \theta'(x, y, z, t + (m - k)T) \]

By (4), we see that (v'', θ'') is a Cauchy sequence.
Put $t = kT$. We see that $(v''(mT), \theta''(mT))$ converges to some (v''_0, θ''_0).

We can show that the strong solution with initial condition (v''_0, θ''_0) is a time periodic solution and this solution is a global attractor of the solutions of the primitive equations.
Thank you very much for your attention!!