Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

Yu-Yu Liu

NCKU Math

August 22, 2012
A Hamilton-Jacobi equation is a first order equation

\[
\begin{align*}
H(Du, u, x) &= 0, \quad x \in \Omega \\
u &= 0, \quad x \in \partial \Omega
\end{align*}
\]

May not have C^1 solutions

\[
\begin{align*}
|u'| &= 1, \quad x \in (-1, 1) \\
u(-1) &= u(1) = 0
\end{align*}
\]

Solutions are defined in viscosity sense. [Crandall-Lions’83]
Viscosity Solution 1

- Given $u \in C(\Omega)$ and $x \in \Omega$.
 Define the super-differential and sub-differential of u at x:

 $$D^+ u(x) = \{ p \in \mathbb{R}^n : u(y) \leq u(x) + p \cdot (y - x) + o(|y - x|), \ y \to x \}$$

 $$D^- u(x) = \{ p \in \mathbb{R}^n : u(y) \geq u(x) + p \cdot (y - x) + o(|y - x|), \ y \to x \}$$

- u is a viscosity subsolution if

 $$H(p, u(x), x) \leq 0, \ \forall x \in \Omega, \ p \in D^+ u(x).$$

- u is a viscosity supersolution if

 $$H(p, u(x), x) \geq 0, \ \forall x \in \Omega, \ p \in D^- u(x).$$

- $u \in C(\Omega)$ is a viscosity solution if u is both a subsolution and supersolution.
Viscosity Solution 2

- $u \in USC(\Omega)$ is a viscosity subsolution if for any $\phi \in C^1(\Omega)$ such that $u - \phi$ reaches maximum at x_0 and $u(x_0) = \phi(x_0)$, then

 \[H(D\phi(x_0), \phi(x_0), x_0) \leq 0. \]

- $u \in LSC(\Omega)$ is a viscosity supersolution if for any $\phi \in C^1(\Omega)$ such that $u - \phi$ reaches minimum at x_0 and $u(x_0) = \phi(x_0)$, then

 \[H(D\phi(x_0), \phi(x_0), x_0) \geq 0. \]

- Viscosity solutions of 2nd order PDE [Crandall-Ishii-Lions’92]
Viscosity Solution 3

- (Vanishing Viscosity) If u^ϵ is the smooth solution of
 \[H(Du^\epsilon, u^\epsilon, x) = \epsilon \Delta u^\epsilon \]
 and $u^\epsilon \to u$ locally uniformly as $\epsilon \to 0$, then u is a viscosity solution.

- $u(x) = 1 - |x|$ is the unique viscosity solution of
 \[
 \begin{cases}
 |u'| = 1, & x \in (-1, 1) \\
 u(-1) = u(1) = 0
 \end{cases}
 \]

- (Regularity) Suppose that $H(p, u, x)$ is coercive in variable p:
 \[
 \lim_{|p| \to +\infty} H(p, u, x) = +\infty \quad \text{uniformly in } u, x
 \]
 then the viscosity solution is locally Lipschitz continuous.
Consider the ODE with control:

\[
\begin{align*}
 y'(s) &= f(y(s), \alpha(s)), \quad t < s < T \\
 y(t) &= x
\end{align*}
\]

\(x \in \mathbb{R}^n\): initial point at time \(t\). \(T\): terminal time.

\(f : \mathbb{R}^n \times A \to \mathbb{R}^n\) bounded and Lipschitz. \(A\): compact subset in \(\mathbb{R}^m\)

\(\alpha(\cdot) \in A\): set of the admissible control:

\[A = \{\alpha : [t, T] \to A | \alpha(\cdot) \text{ is measurable}\}\].

Control problem: find \(\alpha(\cdot)\) which optimizes the cost functional:

\[C_{x,t}[\alpha(\cdot)] = \int_t^T r(y(s), \alpha(s)) \, ds + g(y(T)),\]

\(y(\cdot)\) solves the ODE.

\(r : \mathbb{R}^n \times A \to \mathbb{R}\): running cost. \(g : \mathbb{R}^n \to \mathbb{R}\): terminal cost.
Define the value function as

\[u(x, t) = \inf_{\alpha(\cdot) \in A} C_{x, t}[\alpha(\cdot)] \]

(Hamilton-Jacobi-Bellman equation) \(u \) is the unique viscosity solution of the terminal value problem:

\[
\begin{cases}
 u_t + \min_{a \in A} \{ f(x, a) \cdot Du + r(x, a) \} = 0 & \text{in } \mathbb{R}^n \times (0, T) \\
 u(x, T) = g(x) & \text{on } \mathbb{R}^n \times \{ t = T \}.
\end{cases}
\]
Choose $A = B_{s_L}(0) \subset \mathbb{R}^n$, $f(x, a) = -V(x) + a \in \mathbb{R}^n$, $r(x, a) \equiv 0$:

$$\min_{a \in B_{s_L}(0)} \{(-V(x) + a) \cdot p\} = -V(x) \cdot p - s_L |p|$$

The viscosity solution of

$$\begin{cases}
 u_t - V(x) \cdot Du - s_L |Du| = 0 & \text{in } \mathbb{R}^n \times (0, T) \\
 u(x, T) = g(x) & \text{on } \mathbb{R}^n \times \{t = T\}
\end{cases}$$

is given by

$$u(x, t) = \inf_{\alpha(\cdot) \in A} g(y(T)),$$

where the infimum is over all trajectories $y : [t, T] \to \mathbb{R}^n$ satisfying

$$\begin{cases}
 y'(s) = -V(y(s)) + \alpha(s), & t < s < T \\
 y(t) = x
\end{cases}$$

and the control $\|\alpha(s)\| \leq s_L$.
For the media involving microscopic "self-repeating" environments, the process to extract the macroscopic "average out".

Heat conduction in composite material:

\[
\begin{array}{l}
-\nabla \cdot (A^\epsilon \nabla u^\epsilon) = f, \quad x \in \Omega \\
u^\epsilon = 0, \quad x \in \partial \Omega
\end{array}
\]

\(A^\epsilon = A(x/\epsilon) \in \mathbb{R}^{n \times n}\): thermal conductivity tensor
\(A(y)\): 1-periodic, uniformly positive definite

Homogenization of elliptic PDE: as \(\epsilon \to 0\), \(u^\epsilon \to \bar{u}\) (in some sense) the solution of

\[
\begin{array}{l}
-\nabla \cdot (\bar{A} \nabla \bar{u}) = f, \quad x \in \Omega \\
\bar{u} = 0, \quad x \in \partial \Omega
\end{array}
\]

\(\bar{A}\): homogenized conductivity tensor
1D case

- 1D problem:

\[
\begin{cases}
- \frac{d}{dx} \left(a \left(\frac{x}{\epsilon} \right) \frac{du^\epsilon}{dx} \right) = f, \quad 0 < x < L \\
u^\epsilon(0) = u^\epsilon(L) = 0
\end{cases}
\]

\(a(y): 1\text{-periodic}, \quad 0 < \alpha \leq a(y) \leq \beta < \infty.\)

- As \(\epsilon \to 0\), \(u^\epsilon \to \bar{u}\) the solution of

\[
\begin{cases}
- \frac{d}{dx} \left(\bar{a} \frac{d\bar{u}}{dx} \right) = f, \quad 0 < x < L \\
\bar{u}(0) = \bar{u}(L) = 0
\end{cases}
\]

where \(\bar{a}\) is the harmonic mean of \(a(y)\):

\[
\bar{a} = \left(\int_0^1 \frac{1}{a(y)} dy \right)^{-1}
\]
Homogenization of H-J

- Periodic homogenization of Hamilton-Jacobi equation
 [Lions-Papanicolaou-Varadhan’86]:

 \[u_\epsilon t + H \left(Du_\epsilon, \frac{x}{\epsilon} \right) = 0 \]

 As \(\epsilon \to 0 \), \(u_\epsilon \to \bar{u} \) the solution of

 \[\bar{u}_t + \bar{H}(D\bar{u}) = 0 \]

 \(\bar{H} \): effective Hamiltonian

 - (i) \(H(p, y) \) is continuous and periodic in \(y \)
 - (ii) \(H(p, y) \) is bounded in \(y \) for bounded \(p \)
 - (iii) \(H(p, y) \) is coercive in \(p \) uniformly in \(y \):

 \[|H(p, y)| \to \infty \text{ as } |p| \to \infty \]
Asymptotic Expansion

- Two-scale asymptotic expansion:

\[u^\varepsilon(x, t) = u^0(x, t) + \varepsilon u^1 \left(x, \frac{x}{\varepsilon}, t \right) + \cdots \]

\(x \): slow variable, \(y = \frac{x}{\varepsilon} \): fast variable
\(u^1(x, y, t) \): periodic in \(y \)

\[u^\varepsilon_t = u^0_t + \varepsilon u^1_t + \cdots \]

\[Du^\varepsilon = D_x u^0 + D_y u^1 + \varepsilon D_x u^0 + \cdots \]

- Leading order:

\[u^0_t + H(D_x u^0 + D_y u^1, y) = 0 \]

should be independent of variable \(y \)
Cell Problem

- (Cell Problem) Given any $P \in \mathbb{R}^n$, find unique number $\bar{H} = \bar{H}(P)$ such that the equation

$$H(P + Dv, y) = \bar{H}, \quad y \in \mathbb{T}^n$$

has a periodic solution $v(y)$.

- For $\lambda > 0$, let $v^{(\lambda)}$ be the unique periodic viscosity solution of

$$H(P + Dv^{(\lambda)}, y) = \lambda v^{(\lambda)}, \quad y \in \mathbb{T}^n$$

Due to the coercivity, $u^{(\lambda)}$ is Lipschitz continuous uniformly in λ. As $\lambda \to 0$, $\lambda u^{(\lambda)} \to \bar{H}$ uniformly in y and $u^{(\lambda)} \to u$ the viscosity solution of the cell problem.
For $\epsilon > 0$, assume that u^ϵ is the unique viscosity solution of

\[
\begin{cases}
 u^\epsilon_t + H \left(Du^\epsilon, \frac{x}{\epsilon} \right) = 0 \\
 u^\epsilon(x, 0) = g(x)
\end{cases}
\]

Then as $\epsilon \to 0$, u^ϵ converges uniformly to \bar{u} the unique viscosity solution of the following effective equation:

\[
\begin{cases}
 \bar{u}_t + \bar{H}(D\bar{u}) = 0 \\
 \bar{u}(x, 0) = g(x)
\end{cases}
\]

where \bar{H} is given by the cell problem.

Proof: perturbed test function method [Evans’89]

Homogenization of nonlinear 2nd order PDE [Evans’92]
So solve the cell problem numerically, consider the evolution equation [Qian'03]:

\[
\begin{aligned}
&v_t + H(P + Dv, y) = 0 \quad \text{in } \mathbb{T}^n \times (0, \infty) \\
v(x, 0) = 0 \quad \text{on } \mathbb{T}^n \times \{t = 0\}
\end{aligned}
\]

Due to the coercivity of \(H \), the effective Hamiltonian can be approximated as:

\[
\bar{H} = - \lim_{t \to +\infty} \frac{v(x, t)}{t},
\]

which converges uniformly in \(x \).