Fixed Point Theorems for
Single-Valued and Set-Valued Mappings
on Complete Metric Spaces

Chih-Sheng Chuang, Lai-Jiu Lin*, and Wataru Takahashi
Contents

0. Abstract
1. Introduction
2. Preliminaries
3. Fixed Point Theorems for Single-Valued Mappings
4. Fixed Point Theorems for Set-Valued Mappings
Abstract.

In this paper, motivated by the following literature:

Abstract.

In this paper, motivated by the following literature:

we obtain some generalized fixed point theorems for single-valued and set-valued mappings on complete metric spaces.
Abstract.

In this paper, motivated by the following literature:

we obtain some generalized fixed point theorems for single-valued and set-valued mappings on complete metric spaces.

Using these results, we give new and well-known fixed point theorems which are not proved by Caristi’s fixed point theorem directly.
1. Introduction

Let \((X, d)\) be a metric space.

A mapping \(T : X \rightarrow X\) is said to be **contractive** if there exists
\(r \in [0, 1)\) such that

\[
d(Tx, Ty) \leq r \ d(x, y)
\]

for all \(x, y \in X\). Such a mapping is also called **\(r\)-contractive**.
1. Introduction

Let (X, d) be a metric space. A mapping $T : X \rightarrow X$ is said to be contractive if there exists $r \in [0, 1)$ such that

$$d(Tx, Ty) \leq r \, d(x, y)$$

for all $x, y \in X$. Such a mapping is also called r-contractive.

A mapping $T : X \rightarrow X$ is said to be Kannan [7] if there exists $\alpha \in [0, \frac{1}{2})$ such that

$$d(Tx, Ty) \leq \alpha(d(x, Tx) + d(y, Ty))$$

for all $x, y \in X$.
A mapping $T : X \to X$ is said to be **contractively nonspreading** if there exists $\beta \in [0, \frac{1}{2})$ such that

$$d(Tx, Ty) \leq \beta(d(x, Ty) + d(y, Tx))$$

for all $x, y \in X$.

Notation (Chatterjea, 1972)
A mapping \(T : X \rightarrow X \) is called **contractively hybrid** \([4]\) if there exists \(\gamma \in [0, \frac{1}{3}) \) such that

\[
d(Tx, Ty) \leq r \{d(Tx, y) + d(Ty, x) + d(x, y)\}
\]

for all \(x, y \in X \).
Theorem 1.1 (Zamfirescu, 1972)

Assume that:

(X, d) is a complete metric space;

$T : X \rightarrow X$ is a mapping which satisfies one of the following:

(i) T is contractive;

(ii) T is Kannan;

(iii) T is contractively nonspreading.

Then T has a unique fixed point in X.
Recent Work

(Hasegawa, Komiya, and Takahashi, SCIJP, 2011)

Recently, Hasegawa, Komiya, and Takahashi introduced the concept of **contractively generalized hybrid mappings** on metric spaces, and studied the fixed point theorems for such mappings on complete metric spaces.
Recent Work

(Hasegawa, Komiya, and Takahashi, SCIJP, 2011)

Recently, Hasegawa, Komiya, and Takahashi introduced the concept of **contractively generalized hybrid mappings** on metric spaces, and studied the fixed point theorems for such mappings on complete metric spaces.

Let X be a metric space. A mapping $T : X \to X$ is called **contractively generalized hybrid** if there exist $\alpha, \beta \in \mathbb{R}$ and $r \in [0, 1)$ such that

$$\alpha d(Tx, Ty) + (1 - \alpha)d(x, Ty) \leq r\{\beta d(Tx, y) + (1 - \beta)d(x, y)\}$$

for all $x, y \in X$.

For example,

1. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is \(r\)-contractive for \(\alpha = 1\) and \(\beta = 0\);
For example,

1. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is \(r\)-contractive for \(\alpha = 1\) and \(\beta = 0\);

2. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is contractively nonspreading for \(\alpha = 1 + r\) and \(\beta = 1\);
For example,

1. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is \(r\)-contractive for \(\alpha = 1\) and \(\beta = 0\);

2. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is contractively nonspreading for \(\alpha = 1 + r\) and \(\beta = 1\);

3. An \((\alpha, \beta, r)\)-contractively generalized hybrid mapping is contractively hybrid for \(\alpha = 1 + \frac{r}{2}\) and \(\beta = \frac{1}{2}\).
2. Preliminaries

Throughout this paper,
\(\mathbb{N} \): the set of positive integers;
\(\mathbb{R} \): the set of real numbers;
Banach limit

1. Let ℓ^∞ be the Banach space of bounded sequences with the supremum norm.

2. Let μ be an element of $(\ell^\infty)^*$ (the dual space of ℓ^∞).
Banach limit

1. Let ℓ^∞ be the Banach space of bounded sequences with the supremum norm.
2. Let μ be an element of $(\ell^\infty)^*$ (the dual space of ℓ^∞).
3. Then we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in \ell^\infty$.
4. Sometimes, we denote by $\mu_n x_n$ the value $\mu(f)$.
Banach limit

1. Let ℓ^∞ be the Banach space of bounded sequences with the supremum norm.
2. Let μ be an element of $(\ell^\infty)^*$ (the dual space of ℓ^∞).
3. Then we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in \ell^\infty$.
4. Sometimes, we denote by $\mu_n x_n$ the value $\mu(f)$.
5. A linear functional μ on ℓ^∞ is called a mean if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \ldots)$.
Banach limit

1. Let ℓ^∞ be the Banach space of bounded sequences with the supremum norm.

2. Let μ be an element of $(\ell^\infty)^*$ (the dual space of ℓ^∞).

3. Then we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, ...) \in \ell^\infty$.

4. Sometimes, we denote by $\mu_n x_n$ the value $\mu(f)$.

5. A linear functional μ on ℓ^∞ is called a mean if $\mu(e) = ||\mu|| = 1$, where $e = (1, 1, 1,)$.

6. For $x = (x_1, x_2, x_3,)$, a Banach limit on ℓ^∞ is an invariant mean, that is, $\mu_n x_n = \mu_n x_{n+1}$ for any $n \in \mathbb{N}$.

7. If \(\mu \) is a Banach limit on \(\ell^\infty \), then for \(f = (x_1, x_2, x_3, \ldots) \in \ell^\infty \),

\[
\liminf_{n \to \infty} x_n \leq \mu_n x_n \leq \limsup_{n \to \infty} x_n.
\]

In particular, if \(f = (x_1, x_2, x_3, \ldots) \in \ell^\infty \) and \(x_n \to a \in \mathbb{R} \), then we have \(\mu(f) = \mu_n x_n = a \).
Lemma 2.1 (Hasegawa, Komiya and Takahashi, in press)

Let \((X, d)\) be a metric space, let \(\{x_n\}\) be a bounded sequence in \(X\) and let \(\mu\) be a mean on \(\ell^\infty\). If \(g : X \to \mathbb{R}\) is defined by

\[
g(y) = \mu_n d(x_n, y), \quad \forall y \in X,
\]

then \(g\) is a continuous function on \(X\).
Notations

Let \((X, d)\) be a metric space and let \(f\) be a function of \(X\) into \((-\infty, \infty] = \mathbb{R} \cup \{\infty\}\).

Then

1. \(f\) is proper if there exists \(x \in X\) such that \(f(x) < \infty\). \(f\) is lower semicontinuous if for any \(r \in \mathbb{R}\), the set \(\{x \in X : f(x) \leq r\}\) is closed.

2. \(f\) is bounded below if there exists \(M \in \mathbb{R}\) such that

\[
M \leq f(x), \quad \forall x \in X.
\]
Caristi’s fixed point theorem

Let \((X, d)\) be a complete metric space and let \(\psi : X \rightarrow (\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function. Let \(T : X \rightarrow X\) be a mapping such that for each \(x \in X\),

\[
d(x, Tx) + \psi(Tx) \leq \psi(x).
\]

Then there exists \(\bar{x} \in X\) such that \(T\bar{x} = \bar{x}\).
Notations.

Let \((X, d)\) be a metric space and let \(P(X)\) be the class of all nonempty subsets of \(X\).

A mapping of \(X\) into \(P(X)\) is called a *set-valued mapping*, or a *multi-valued mapping*.

For a set-valued mapping \(T : X \to P(X)\), we denote by \(F(T)\) and \(SF(T)\) the fixed point set for \(T\) and the strict fixed point set for \(T\) respectively, i.e.,

\[
F(T) = \{z \in X : z \in Tz\}, \quad SF(T) = \{z \in X : \{z\} = Tz\}.
\]
Notations.

For $x \in X$ and $A \subset X$, define

$$d(x, A) = \inf \{d(x, y) : y \in A\}.$$

Let $BC(X)$ be the class of all nonempty bounded closed subsets of X.
For $A, B \in BC(X)$, define

$$\delta(A, B) = \sup \{d(x, B) : x \in A\}.$$
Theorem 2.2.

Let \((X, d)\) be a metric space and let \(BC(X)\) be the class of all nonempty bounded closed subsets of \(X\). For \(A, B \in BC(X)\), define

\[
H(A, B) = \max\{\delta(A, B), \delta(B, A)\}.
\]

Then, \(H\) is a metric on \(BC(X)\).
Notations.

Let T be a mapping of X into $BC(X)$. Then T is called \textit{nonexpansive} if

$$H(Tx, Ty) \leq d(x, y), \quad x, y \in X.$$
Let T be a mapping of X into $BC(X)$. Then T is called \textit{nonexpansive} if
\[H(Tx, Ty) \leq d(x, y), \quad x, y \in X. \]
If there exists $\alpha \in \mathbb{R}$ with $0 \leq \alpha < 1$ such that
\[H(Tx, Ty) \leq \alpha d(x, y), \quad x, y \in X, \]
then T is called an α-\textit{contraction}.
Notations.

Let T be a mapping of X into $BC(X)$. Then T is called nonexpansive if

$$H(Tx, Ty) \leq d(x, y), \quad x, y \in X.$$

If there exists $\alpha \in \mathbb{R}$ with $0 \leq \alpha < 1$ such that

$$H(Tx, Ty) \leq \alpha d(x, y), \quad x, y \in X,$$

then T is called an α-contraction.

If T is nonexpansive, then the real valued function g on X defined by

$$g(x) = d(x, Tx), \quad \forall x \in X$$

is continuous.
Theorem 2.3 (Nadler, 1969).

Let \((X, d)\) be a complete metric space and let \(T\) be an \(\alpha\)-contraction from \(X\) into \(BC(X)\).
Then, \(T\) has a fixed point \(z\) in \(X\), i.e., \(z \in Tz\).
3. Fixed Point Theorems for Single-Valued Mappings
Theorem 3.1.

Let \((X, d)\) be a complete metric space, let \(\mu\) be a mean on \(\ell^\infty\), let \(\{x_n\}\) be a bounded sequence in \(X\), and let \(\psi : X \to (-\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function. Let \(T : X \to X\) be a mapping. Suppose that there exists \(m \in \mathbb{N} \cup \{0\}\) such that

\[
\mu_n d(x_n, T^m y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]

Then there exists \(\bar{x} \in X\) such that

(a) \(\mu_n d(x_n, \bar{x}) = 0\);
(b) \(\bar{x} = \lim_{m \to \infty} T^m y\) for all \(y \in X\) with \(\psi(y) < \infty\);
(c) \(\psi(\bar{x}) = \inf_{u \in X} \psi(u)\);
(d) \(\bar{x}\) is a unique fixed point of \(T\).
Proof of Theorem 3.1.

Let $g : X \to [0, \infty)$ be a function defined by $g(z) := \mu_n d(x_n, z)$ for each $z \in X$. Take $y \in X$ with $\psi(y) < \infty$. Then we have:

$$\mu_n d(x_n, T^m T^k y) \leq \psi(T^k y) - \psi(T^{k+1} y)$$

for all $k \in \mathbb{N} \cup \{0\}$. Then

$$(*)_1 \; \{\psi(T^k y)\}_{k=0}^{\infty} \text{ is a decreasing sequence which is bounded below.}$$

$$(*)_2 \lim_{k \to \infty} \psi(T^k y) \text{ exists.}$$

Put $s = \lim_{k \to \infty} \psi(T^k y)$. Since

$$\sum_{k=0}^{N} g(T^{m+k} y) = \sum_{k=0}^{N} \mu_n d(x_n, T^{m+k} y) \leq \psi(y) - \psi(T^{N+1} y)$$

for any $N \in \mathbb{N}$,
Proof of Theorem 3.1-cont.

we have that
\[\sum_{k=0}^{\infty} g(T^{m+k}y) = \sum_{k=0}^{\infty} \mu_n d(x_n, T^{m+k}y) \leq \psi(y) - s < \infty. \]

Thus we have that
\[\lim_{k \to \infty} g(T^k T^m y) = \lim_{k \to \infty} \mu_n d(x_n, T^k T^m y) = 0. \]

Hence for each \(\varepsilon > 0 \), there exists \(K \in \mathbb{N} \) such that for any \(k \geq K \),
\[\mu_n d(x_n, T^k T^m y) < \frac{\varepsilon}{2}. \]

This implies that for all \(k_1, k_2 \geq K \),
\[d(T^{k_1} T^m y, T^{k_2} T^m y) \leq \mu_n d(x_n, T^{k_1} T^m y) + \mu_n d(x_n, T^{k_2} T^m y) < \varepsilon. \]
Proof of Theorem 3.1-cont.

Then \(\{ T^k T^m y \} \) is a Cauchy sequence in \(X \), and there exists \(\bar{x} \in X \) such that \(\lim_{k \to \infty} T^k T^m y = \bar{x} \).
Proof of Theorem 3.1-cont.

Then \(\{ T^k T^m y \} \) is a Cauchy sequence in \(X \), and there exists \(\bar{x} \in X \) such that \(\lim_{k \to \infty} T^k T^m y = \bar{x} \).

By Lemma 2.1, we have that

\[
g(\bar{x}) = \lim_{k \to \infty} g(T^k T^m y) = 0.
\]

This implies that \(\mu_n d(x_n, \bar{x}) = 0 \).
Proof of Theorem 3.1-cont.

Then \(\{ T^k T^m y \} \) is a Cauchy sequence in \(X \), and there exists \(\bar{x} \in X \) such that \(\lim_{k \to \infty} T^k T^m y = \bar{x} \).

By Lemma 2.1, we have that
\[
g(\bar{x}) = \lim_{k \to \infty} g(T^k T^m y) = 0.
\]

This implies that \(\mu_n d(x_n, \bar{x}) = 0 \).

Thus we have that for any \(u \in X \) with \(\psi(u) < \infty \), there exists \(\bar{u} \in X \) such that \(\lim_{k \to \infty} T^k T^m u = \bar{u} \) and \(g(\bar{u}) = 0 \). This implies \(\mu_n d(x_n, \bar{u}) = 0 \).
Proof of Theorem 3.1-cont.

Then \(\{ T^k T^m y \} \) is a Cauchy sequence in \(X \), and there exists \(\bar{x} \in X \) such that \(\lim_{k \to \infty} T^k T^m y = \bar{x} \).

By Lemma 2.1, we have that

\[
g(\bar{x}) = \lim_{k \to \infty} g(T^k T^m y) = 0.
\]

This implies that \(\mu_n d(x_n, \bar{x}) = 0. \)

Thus we have that for any \(u \in X \) with \(\psi(u) < \infty \), there exists \(\bar{u} \in X \) such that \(\lim_{k \to \infty} T^k T^m u = \bar{u} \) and \(g(\bar{u}) = 0. \) This implies \(\mu_n d(x_n, \bar{u}) = 0. \) Since

\[
d(\bar{x}, \bar{u}) \leq d(\bar{x}, x_n) + d(x_n, \bar{u}),
\]

we have that

\[
d(\bar{x}, \bar{u}) \leq \mu_n d(\bar{x}, x_n) + \mu_n d(x_n, \bar{u}) = 0 + 0 = 0
\]
Proof of Theorem 3.1-cont.

Thus we have $\bar{u} = \bar{x}$. Therefore we have that $\bar{x} = \lim_{m \to \infty} T^k T^m z$ for all $z \in X$ with $\psi(z) < \infty$.
Proof of Theorem 3.1-cont.

Thus we have $\bar{u} = \bar{x}$. Therefore we have that $\bar{x} = \lim_{m \to \infty} T^k T^m z$
for all $z \in X$ with $\psi(z) < \infty$.

By assumption, we have that

$$\psi(T\bar{x}) = \psi(T\bar{u}) \leq \mu_n d(x_n, T^m \bar{x}) + \psi(T\bar{x}) \leq \psi(\bar{x}).$$

Since ψ is lower semicontinuous and $\lim_{k \to \infty} T^k T^m u = \bar{x}$ for all $u \in X$ with $\psi(u) < \infty$, we have that

$$\psi(\bar{x}) = \inf_{y \in X} \psi(y) \leq \psi(T\bar{x}) \leq \psi(\bar{x}),$$

and hence $\psi(\bar{x}) = \inf_{y \in X} \psi(y)$.
Proof of Theorem 3.1-cont.

Since

\[0 \leq g(T^m\bar{x}) = \mu_n d(x_n, T^m\bar{x}) \leq \psi(\bar{x}) - \psi(T\bar{x}) \leq 0, \]

we have that \(g(T^m\bar{x}) = \mu_n d(x_n, T^m\bar{x}) = 0 \) and hence \(T^m\bar{x} = \bar{x} \).

Then we have that

\[0 \leq g(T\bar{x}) = \mu_n d(x_n, T\bar{x}) = \mu_n d(x_n, T^{m+1}\bar{x}) \leq \psi(\bar{x}) - \psi(T^2\bar{x}) \leq 0 \]

and hence \(g(T\bar{x}) = \mu_n d(x_n, T\bar{x}) = 0 \). Thus \(g(\bar{x}) = g(T\bar{x}) = 0 \) and hence \(T\bar{x} = \bar{x} \).
Proof of Theorem 3.1-cont.

Since

\[0 \leq g(T^m\bar{x}) = \mu_n d(x_n, T^m\bar{x}) \leq \psi(\bar{x}) - \psi(T\bar{x}) \leq 0, \]

we have that \(g(T^m\bar{x}) = \mu_n d(x_n, T^m\bar{x}) = 0 \) and hence \(T^m\bar{x} = \bar{x} \).

Then we have that

\[0 \leq g(T\bar{x}) = \mu_n d(x_n, T\bar{x}) = \mu_n d(x_n, T^{m+1}\bar{x}) \leq \psi(\bar{x}) - \psi(T^2\bar{x}) \leq 0 \]

and hence \(g(T\bar{x}) = \mu_n d(x_n, T\bar{x}) = 0 \). Thus \(g(\bar{x}) = g(T\bar{x}) = 0 \)

and hence \(T\bar{x} = \bar{x} \). We show that \(\bar{x} \) is a unique fixed point of \(T \).

Indeed, if \(v \) is a fixed point of \(T \), then

\[0 \leq g(v) = g(T^m v) \leq \psi(v) - \psi(Tv) = 0. \]

Hence we have \(v = \bar{x} \). Therefore \(\bar{x} \) is a unique fixed point of \(T \).
Corollary 3.1.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\mu\) is a mean on \(\ell^\infty\);
(c) \(\{x_n\}\) is a bounded sequence in \(X\).
(d) \(\psi : X \to (-\infty, \infty)\) is a bounded below and lower semicontinuous function;
(e) \(T : X \to X\) is a mapping such that

\[
\mu_n d(x_n, Ty) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]

Then the following hold:

(i) \(T\) has a unique fixed point \(u\) in \(X\);
(ii) for every \(z \in X\), the sequence \(\{T^nz\}\) converges to \(u\).
Corollary 3.2.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\mu\) is a mean on \(\ell^\infty\);
(c) \(\{x_n\}\) is a bounded sequence in \(X\).
(d) Let \(T : X \to X\) be a nonexpansive mapping. Suppose that there exists \(m \in \mathbb{N} \cup \{0\}\) such that

\[\mu_n d(x_n, T^m y) + d(Ty, T^2 y) \leq d(y, Ty), \quad \forall y \in X.\]

Then the following hold:

(i) \(T\) has a unique fixed point \(u\) in \(X\);
(ii) for every \(z \in X\), the sequence \(\{T^n z\}\) converges to \(u\).
Theorem 3.2 (Hasegawa, Komiya and Takahashi, in press)

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) Let \(T\) be a mapping of \(X\) into itself. Suppose that there exist a real number \(r\) with \(0 \leq r < 1\) and an element \(x \in X\) such that \(\{T^n x\}\) is bounded and

\[
\mu_n d(T^n x, Ty) \leq r \mu_n d(T^n x, y), \quad \forall y \in X
\]

for some mean \(\mu\) on \(\ell^\infty\).

Then the following hold:

(i) \(T\) has a unique fixed point \(u \in X\);
(ii) for every \(z \in X\), the sequence \(\{T^n z\}\) converges to \(u\).
Proof of Theorem 3.2.

Let r be a real number r with $0 \leq r < 1$ and take $x \in X$ such that $\{T^n x\}$ is bounded. Define a function $\psi : X \to [0, \infty)$ as follows:

$$
\psi(y) = \frac{1}{1 - r} \mu_n d(T^n x, y), \quad \forall y \in X.
$$

Then we know from Lemma 2.1 that ψ is continuous on X.

Furthermore we have that the following (1) and (2) are equivalent:

(1) $\mu_n d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X$;

(2) $\mu_n d(T^n x, Ty) \leq r \mu_n d(T^n x, y), \quad \forall y \in X$.

Thus from Theorem 3.1, we obtain the desired result.
Theorem 3.3 (Hasegawa, Komiya and Takahashi, in press).

Assume that:

(a) (X, d) is a complete metric space;
(b) $T : X \rightarrow X$ is an (α, β, r)-contractively generalized hybrid mapping such that

$$\beta \geq 0, \quad \alpha - r\beta > 0, \quad \text{and} \quad r < \frac{\alpha}{1 + \beta}.$$

Then the following hold:

(i) T has a unique fixed point u in X;
(ii) for every $z \in X$, the sequence $\{T^n z\}$ converges to u.
Proof of Theorem 3.3.

For an \((\alpha, \beta, r)\)-contractively generalized hybrid mapping

\[T : X \to X \]

such that

\[\beta \geq 0, \ \alpha - r\beta > 0, \ \text{and} \ r < \frac{\alpha}{1 + \beta}, \]

we know from [4] that the sequence \(\{T^n x\} \) for every \(x \in X \) is bounded. Fix \(x \in X \). Since \(T \) is a \((\alpha, \beta, r)\)-contractively generalized hybrid mapping, we have that for any \(y \in X \) and \(n \in \mathbb{N} \),

\[
\alpha d(T^{n+1}x, Ty) + (1 - \alpha)d(T^nx, Ty) \\
\leq r\{\beta d(T^{n+1}x, y) + (1 - \beta)d(T^nx, y)\}.
\]

Since \(\{T^nx\} \) is bounded, we can apply a Banach limit \(\mu \) to both sides of the inequality.
Proof of Theorem 3.3-cont.

Then we have that

\[\alpha \mu_n d(T^{n+1}x, Ty) + (1 - \alpha) \mu_n d(T^n x, Ty) \]

\[\leq \beta r \mu_n d(T^{n+1} x, y) + r(1 - \beta) \mu_n d(T^n x, y) \]

and hence

\[\alpha \mu_n d(T^n x, Ty) + (1 - \alpha) \mu_n d(T^n x, Ty) \]

\[\leq \beta r \mu_n d(T^n x, y) + r(1 - \beta) \mu_n d(T^n x, y). \]

Then we have that

\[\mu_n d(T^n x, Ty) \leq r \mu_n d(T^n x, y) \]

for all \(y \in X \).
Defining a function $\psi : X \to [0, \infty)$ as in the proof of Theorem 3.2 by

$$\psi(y) = \frac{1}{1 - r} \mu_n d(T^n x, y), \quad \forall y \in X,$$

we have

$$\mu_n d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.$$

Thus from Theorem 3.1, or Theorem 3.2, we obtain the desired result.
Theorem 3.4.

Assume that:

(i) \((X, d)\) is a complete metric space;

(ii) \(\psi : X \to (-\infty, \infty]\) is a proper, bounded below, and lower semicontinuous function;

(iii) Let \(T : X \to X\) be a mapping. Suppose that there exists \(\alpha \in \mathbb{R}\) such that
\[
\alpha d(Tx, y) + (1 - \alpha)d(x, y) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.
\]

Then \(T\) has a unique fixed point \(\bar{x}\) in \(X\) such that
\[
\psi(\bar{x}) = \inf_{u \in X} \psi(u) \quad \text{and} \quad \bar{x} = \lim_{m \to \infty} T^m z \quad \text{for all} \quad z \in X \quad \text{with} \quad \psi(z) < \infty.
\]
Proof of Theorem 3.4.

Let us first consider $\alpha > 0$. By (iii), we have that

$$\alpha d(Tx, x) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$

From Theorem 2.1 (Caristi’s fixed point theorem), there exists $\bar{x} \in X$ such that $T\bar{x} = \bar{x}$. By (iii) again, we have that

$$d(\bar{x}, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.$$

By Theorem 3.1, we have that \bar{x} is a unique fixed point of T such that $\psi(\bar{x}) = \inf_{u \in X} \psi(u)$ and $\bar{x} = \lim_{m \to \infty} T^m z$ for all $z \in X$ with $\psi(z) < \infty$.

Proof of Theorem 3.4-cont.

Next let us consider the case of $\alpha = 0$. Then we have

$$d(x, y) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.$$

Replacing x and y by Tx and x in the above inequality respectively, we have that

$$d(Tx, x) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$
Proof of Theorem 3.4-cont.

Next let us consider the case of $\alpha = 0$. Then we have
\[
d(x, y) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.
\]
Replacing x and y by Tx and x in the above inequality respectively, we have that
\[
d(Tx, x) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.
\]
By Theorem 2.1 (Caristi’s fixed point theorem), there exists $\bar{x} \in X$ such that $T\bar{x} = \bar{x}$.
Proof of Theorem 3.4-cont.

Next let us consider the case of $\alpha = 0$. Then we have
\[
d(x, y) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.
\]
Replacing x and y by Tx and x in the above inequality respectively, we have that
\[
d(Tx, x) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.
\]
By Theorem 2.1 (Caristi’s fixed point theorem), there exists $\bar{x} \in X$ such that $T\bar{x} = \bar{x}$. Hence,
\[
d(\bar{x}, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]
Proof of Theorem 3.4-cont.

Next let us consider the case of $\alpha = 0$. Then we have

$$d(x, y) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.$$

Replacing x and y by Tx and x in the above inequality respectively, we have that

$$d(Tx, x) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$

By Theorem 2.1 (Caristi’s fixed point theorem), there exists $\bar{x} \in X$ such that $T\bar{x} = \bar{x}$. Hence,

$$d(\bar{x}, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.$$

By Theorem 3.1, we have that \bar{x} is a unique fixed point of T such that $\psi(\bar{x}) = \inf_{u \in X} \psi(u)$ and $\bar{x} = \lim_{m \to \infty} T^m z$ for all $z \in X$ with $\psi(z) < \infty$.
Proof of Theorem 3.4-cont.

In the case of $\alpha < 0$, we have $1 - \alpha > 0$. By (iii),

$$(1 - \alpha)d(x, Tx) + \psi(T^2x) \leq \psi(Tx), \quad \forall x \in X.$$
Proof of Theorem 3.4-cont.

In the case of $\alpha < 0$, we have $1 - \alpha > 0$. By (iii),

$$(1 - \alpha)d(x, Tx) + \psi(T^2x) \leq \psi(Tx), \quad \forall x \in X.$$

Take $x \in X$ with $\psi(x) < \infty$. Then we have that for any $n \in \mathbb{N}$,

$$(1 - \alpha)d(x, Tx) + \psi(T^2x) \leq \psi(Tx),$$
$$(1 - \alpha)d(Tx, T^2x) + \psi(T^3x) \leq \psi(T^2x),$$
$$\vdots$$
$$(1 - \alpha)d(T^{n-1}x, T^nx) + \psi(T^{n+1}x) \leq \psi(T^nx).$$
Proof of Theorem 3.4-cont.

In the case of $\alpha < 0$, we have $1 - \alpha > 0$. By (iii),

$$(1 - \alpha)d(x, Tx) + \psi(T^2x) \leq \psi(Tx), \quad \forall x \in X.$$

Take $x \in X$ with $\psi(x) < \infty$. Then we have that for any $n \in \mathbb{N}$,

$$(1 - \alpha)d(x, Tx) + \psi(T^2x) \leq \psi(Tx),$$

$$(1 - \alpha)d(Tx, T^2x) + \psi(T^3x) \leq \psi(T^2x),$$

$$\vdots$$

$$(1 - \alpha)d(T^{n-1}x, T^nx) + \psi(T^{n+1}x) \leq \psi(T^nx).$$

Adding these inequalities, we have that

$$(1 - \alpha)\left\{d(x, Tx) + \cdots + d(T^{n-1}x, T^nx)\right\} \leq \psi(Tx) - \psi(T^{n+1}x).$$
Proof of Theorem 3.4-cont.

Since \(\{ \psi(T^n x) \} \) is a decreasing sequence, there exists
\[s = \lim_{n \to \infty} \psi(T^n x). \]
Proof of Theorem 3.4-cont.

Since \(\{ \psi(T^n x) \} \) is a decreasing sequence, there exists

\[
s = \lim_{n \to \infty} \psi(T^n x).
\]

Thus we have that for any \(n \in \mathbb{N} \),

\[
(1 - \alpha)d(x, T^n x) \leq (1 - \alpha)\left\{ d(x, Tx) + \cdots + d(T^{n-1} x, T^n x) \right\} \\
\leq (1 - \alpha)\left\{ d(x, Tx) + \cdots + d(T^{n-1} x, T^n x) + \cdots \right\} \\
\leq \psi(Tx) - s < \infty.
\]

Then \(\{ T^n x \} \) is bounded.
Proof of Theorem 3.4-cont.

Since \(\{\psi(T^n x)\} \) is a decreasing sequence, there exists \(s = \lim_{n \to \infty} \psi(T^n x) \). Thus we have that for any \(n \in \mathbb{N} \),

\[
(1 - \alpha) d(x, T^n x) \leq (1 - \alpha) \{ d(x, Tx) + \cdots + d(T^{n-1} x, T^n x) \} \\
\leq (1 - \alpha) \{ d(x, Tx) + \cdots + d(T^{n-1} x, T^n x) + \cdots \} \\
\leq \psi(Tx) - s < \infty.
\]

Then \(\{T^n x\} \) is bounded. By (iii) again, we have that for any \(n \in \mathbb{N} \),

\[
\alpha d(T^{n+1} x, y) + (1 - \alpha) d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]
Proof of Theorem 3.4-cont.

Since \(\{ \psi(T^n x) \} \) is a decreasing sequence, there exists
\[
s = \lim_{n \to \infty} \psi(T^n x).
\]
Thus we have that for any \(n \in \mathbb{N} \),
\[
(1 - \alpha)d(x, T^n x) \leq (1 - \alpha)\{ d(x, Tx) + \cdots + d(T^{n-1}x, T^n x) \}
\leq (1 - \alpha)\{ d(x, Tx) + \cdots + d(T^{n-1}x, T^n x) + \cdots \}
\leq \psi(Tx) - s < \infty.
\]
Then \(\{ T^n x \} \) is bounded. By (iii) again, we have that for any \(n \in \mathbb{N} \),
\[
\alpha d(T^{n+1} x, y) + (1 - \alpha)d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]
Applying a Banach limit \(\mu \) to the both sides of this inequality, we have that
\[
\alpha \mu_n d(T^{n+1} x, y) + (1 - \alpha)\mu_n d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X.
\]
Then we get that

\[\mu_n d(T^n x, y) + \psi(Ty) \leq \psi(y), \quad \forall y \in X. \]

From Theorem 3.1, we have that \(T \) has a unique fixed point \(\bar{x} \) in \(X \) such that \(\psi(\bar{x}) = \inf_{u \in X} \psi(u) \) and \(\bar{x} = \lim_{m \to \infty} T^m z \) for all \(z \in X \) with \(\psi(z) < \infty \).
Theorem 3.5.

Assume that:

(i) \((X, d)\) is a complete metric space;

(ii) \(\psi : X \rightarrow (-\infty, \infty]\) is a proper, bounded below, and lower semicontinuous function;

(iii) Let \(T : X \rightarrow X\) be a mapping. Suppose that there exists \(\alpha \in \mathbb{R}\) such that

\[
\alpha d(Tx, Ty) + (1 - \alpha)d(x, Ty) + \psi(Ty) \leq \psi(y), \quad \forall x, y \in X.
\]

Then \(T\) has a unique fixed point \(\bar{x}\) in \(X\) such that

\[
\psi(\bar{x}) = \inf_{u \in X} \psi(u) \quad \text{and} \quad \bar{x} = \lim_{m \rightarrow \infty} T^m z \quad \text{for all} \quad z \in X \quad \text{with} \quad \psi(z) < \infty.
\]
Proof of Theorem 3.5-cont.

Let us first consider $\alpha > 0$. By (iii), we have that

$$\alpha d(T^2x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$

As in the proof of Theorem 3.4, we have that T has a unique fixed point \bar{x} in X such that $\psi(\bar{x}) = \inf_{u \in X} \psi(u)$ and $\bar{x} = \lim_{m \to \infty} T^m z$ for all $z \in X$ with $\psi(z) < \infty$.

In the case of $\alpha = 0$. By (iii) again, we have that

$$d(x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$

Similarly, in the case of $\alpha < 0$. By (iii) again, we have that

$$(1 - \alpha)d(x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.$$

As in the proof of Theorem 3.4 for such two cases, we get the conclusion.
Proof of Theorem 3.5-cont.

Let us first consider $\alpha > 0$. By (iii), we have that
\[
\alpha d(T^2x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.
\]

As in the proof of Theorem 3.4, we have that T has a unique fixed point \bar{x} in X such that $\psi(\bar{x}) = \inf_{u \in X} \psi(u)$ and $\bar{x} = \lim_{m \to \infty} T^m z$ for all $z \in X$ with $\psi(z) < \infty$.

In the case of $\alpha = 0$. By (iii) again, we have that
\[
d(x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X.
\]
Proof of Theorem 3.5-cont.

Let us first consider $\alpha > 0$. By (iii), we have that
\[\alpha d(T^2x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X. \]

As in the proof of Theorem 3.4, we have that T has a unique fixed point \bar{x} in X such that $\psi(\bar{x}) = \inf_{u \in X} \psi(u)$ and $\bar{x} = \lim_{m \to \infty} T^m z$ for all $z \in X$ with $\psi(z) < \infty$.

In the case of $\alpha = 0$. By (iii) again, we have that
\[d(x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X. \]

Similarly, in the case of $\alpha < 0$. By (iii) again, we have that
\[(1 - \alpha)d(x, Tx) + \psi(Tx) \leq \psi(x), \quad \forall x \in X. \]

As in the proof of Theorem 3.4 for such two cases, we get the conclusion.
4. Fixed Point Theorems for Set-Valued Mappings
Theorem 4.1.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\{x_n\}\) is a bounded sequence in \(X\);
(c) \(\mu\) is a mean on \(\ell^\infty\) and let \(\psi : X \to (-\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function;
(d) \(T : X \to P(X)\) is a set-valued mapping such that for each \(u \in X\), there exists \(v \in Tu\) satisfying

\[\mu_n d(x_n, u) + \psi(v) \leq \psi(u). \]

Then there exists \(\bar{x} \in X\) such that
Theorem 4.1.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\{x_n\}\) is a bounded sequence in \(X\);
(c) \(\mu\) is a mean on \(\ell^\infty\) and let \(\psi : X \to (-\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function;
(d) \(T : X \to P(X)\) is a set-valued mapping such that for each \(u \in X\), there exists \(v \in Tu\) satisfying

\[
\mu_n d(x_n, u) + \psi(v) \leq \psi(u).
\]

Then there exists \(\bar{x} \in X\) such that

(i) \(\mu_n d(x_n, \bar{x}) = 0\);
Theorem 4.1.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\{x_n\}\) is a bounded sequence in \(X\);
(c) \(\mu\) is a mean on \(\ell^\infty\) and let \(\psi : X \to (-\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function;
(d) \(T : X \to P(X)\) is a set-valued mapping such that for each \(u \in X\), there exists \(v \in Tu\) satisfying

\[\mu_n d(x_n, u) + \psi(v) \leq \psi(u).\]

Then there exists \(\bar{x} \in X\) such that

(i) \(\mu_n d(x_n, \bar{x}) = 0\); (ii) \(\bar{x} \in T\bar{x}\);
Theorem 4.1.

Assume that:
(a) \((X, d)\) is a complete metric space;
(b) \(\{x_n\}\) is a bounded sequence in \(X\);
(c) \(\mu\) is a mean on \(\ell^\infty\) and let \(\psi : X \to (-\infty, \infty]\) be a proper, bounded below, and lower semicontinuous function;
(d) \(T : X \to P(X)\) is a set-valued mapping such that for each \(u \in X\), there exists \(v \in Tu\) satisfying
\[
\mu_n d(x_n, u) + \psi(v) \leq \psi(u).
\]

Then there exists \(\bar{x} \in X\) such that
(i) \(\mu_n d(x_n, \bar{x}) = 0\);
(ii) \(\bar{x} \in T\bar{x}\);
(iii) \(\psi(\bar{x}) = \inf_{y \in X} \psi(y)\);
Theorem 4.1.

Assume that:
(a) (X, d) is a complete metric space;
(b) $\{x_n\}$ is a bounded sequence in X;
(c) μ is a mean on ℓ^∞ and let $\psi : X \to (-\infty, \infty]$ be a proper, bounded below, and lower semicontinuous function;
(d) $T : X \to P(X)$ is a set-valued mapping such that for each $u \in X$, there exists $v \in Tu$ satisfying
$$\mu_n d(x_n, u) + \psi(v) \leq \psi(u).$$

Then there exists $\bar{x} \in X$ such that
(i) $\mu_n d(x_n, \bar{x}) = 0$;
(ii) $\bar{x} \in T\bar{x}$;
(iii) $\psi(\bar{x}) = \inf_{y \in X} \psi(y)$;
(iv) for any $y \in X$ with $\psi(y) < \infty$, there exists a sequence $\{y_n\} \subset X$ such that $y_{n+1} \in Ty_n$, $n \in \mathbb{N} \cup \{0\}$ and $y_n \to \bar{x}$.
Proof of Theorem 4.1.

For each \(u_1 \in X \) with \(\psi(u_1) < \infty \), there exists \(u_2 \in Tu_1 \) such that
\[
\mu_n d(x_n, u_1) \leq \psi(u_1) - \psi(u_2).
\]
Repeating this process, we get a sequence \(\{u_m\} \) in \(X \) such that
\(u_{m+1} \in Tu_m \) and
\[
\mu_n d(x_n, u_m) \leq \psi(u_m) - \psi(u_{m+1})
\]
for each \(m \in \mathbb{N} \). Clearly, \(\{\psi(u_m)\} \) is a decreasing sequence.

Furthermore, we have:
\[
\lim_{m \to \infty} \mu_n d(x_n, u_m) = 0.
\]
Hence for each \(\varepsilon > 0 \), there exists \(m_0 \in \mathbb{N} \) such that for any \(m \geq m_0 \),
\[
\mu_n d(x_n, u_m) < \frac{\varepsilon}{2}.
\]
Proof of Theorem 4.1-cont.

This implies that for all \(m_1, m_2 \geq m_0 \),

\[
d(u_{m_1}, u_{m_2}) \leq \mu_n d(x_n, u_{m_1}) + \mu_n d(x_n, u_{m_2}) < \varepsilon.
\]

Then \(\{u_m\} \) is a Cauchy sequence in \(X \), and there exists \(\bar{x} \in X \) such that \(\lim_{m \to \infty} u_m = \bar{x} \) and \(\mu_n d(x_n, \bar{x}) = 0 \). By assumption again, we have \(\bar{u} \in X \) such that \(\bar{u} \in T\bar{x} \) and

\[
\mu_n d(x_n, \bar{x}) \leq \psi(\bar{x}) - \psi(\bar{u}).
\]

Then we have \(\psi(\bar{u}) \leq \psi(\bar{x}) \). Furthermore, repeating this process, we have \(\bar{v} \in X \) such that \(\bar{v} \in T\bar{u} \) and

\[
\mu_n d(x_n, \bar{u}) \leq \psi(\bar{u}) - \psi(\bar{v}).
\]

Then we have \(\psi(\bar{v}) \leq \psi(\bar{u}) \).
Proof of Theorem 4.1-cont.

Next, following the same argument as above for each $y_1 \in X$ with $\psi(y_1) < \infty$, we can construct a sequence $\{y_m\}$ in X such that

$$\lim_{m \to \infty} \psi(y_m) = \inf_{m \in \mathbb{N}} \psi(y_m) \text{ exists, } \lim_{m \to \infty} y_m = \bar{y} \text{ for some } \bar{y} \in X,$$

and $\mu_n d(x_n, \bar{y}) = 0$. Since $d(\bar{x}, \bar{y}) \leq d(\bar{y}, x_n) + d(x_n, \bar{x})$, we have

$$d(\bar{x}, \bar{y}) \leq \mu_n d(\bar{y}, x_n) + \mu_n d(x_n, \bar{x}) = 0 + 0 = 0.$$

Thus we have $\bar{y} = \bar{x}$. Since ψ is lower semicontinuous,

$$\psi(\bar{x}) = \psi(\bar{y}) \leq \liminf_{m \to \infty} \psi(y_m) = \lim_{m \to \infty} \psi(y_m) = \inf_{m \in \mathbb{N}} \psi(y_m) \leq \psi(y_1).$$

Since y_1 is any point of X with $\psi(y_1) < \infty$, we have that

$$\psi(\bar{x}) = \inf_{x \in X} \psi(x) \leq \psi(\bar{v}) \leq \psi(\bar{u}) \leq \psi(\bar{x}).$$

Thus we have $\psi(\bar{x}) = \psi(\bar{v}) = \psi(\bar{u})$. This implies that $\bar{u} = \bar{x}$.

Therefore we have from $\bar{u} \in T\bar{x}$ that $\bar{x} = \bar{u} \in T\bar{x}$.
Notations.

Let \((X, d)\) be a metric space and let \(P(X)\) be the set of nonempty subsets of \(X\).

Then \(T : X \to P(X)\) is called a multi-valued weakly Picard operator [17] if for each \(x \in X\) and each \(y \in Tx\), there exists a sequence \(\{x_n\}\) in \(X\) such that

1. \(x_0 = x, \ x_1 = y\);
2. \(x_{n+1} \in Tx_n, \ n \in \mathbb{N} \cup \{0\}\);
3. \(\{x_n\}\) is convergent and its limit is a fixed point of \(T\).
Theorem 4.2.

Assume that:

(a) \((X, d)\) is a complete metric space;
(b) \(\{x_n\}\) is a bounded sequence in \(X\);
(c) \(\mu\) is a mean on \(\ell^\infty\);
(d) \(\psi : X \to (-\infty, \infty)\) is a bounded below and lower semicontinuous function;
(e) Let \(T : X \to P(X)\) be a set-valued mapping such that for each \(u \in X\), there exists \(v \in Tu\) satisfying

\[
\mu_n d(x_n, u) + \psi(v) \leq \psi(u).
\]

Then \(T\) is a multi-valued weakly Picard operator.
Proof of Theorem 4.2.

For each \(x \in X \) and each \(y \in Tx \), put \(u_0 = x \) and \(u_1 = y \). Since \(\psi \) is a real-valued function on \(X \), we can take \(u_2 \in Tu_1 \) such that

\[
\mu_n d(x_n, u_1) + \psi(u_2) \leq \psi(u_1).
\]

Repeating this process, we get a sequence \(\{u_m\} \) in \(X \) such that \(u_{m+1} \in Tu_m \) and

\[
\mu_n d(x_n, u_m) \leq \psi(u_m) - \psi(u_{m+1})
\]

for each \(m \in \mathbb{N} \cup \{0\} \). Thus we have the desired result from Theorem 4.1.
Theorem 4.3.

Assume that:

(a) \((X, d)\) is a complete metric space;

(b) \(T : X \to BC(X)\) is an \(\alpha\)-contraction with \(0 \leq \alpha < 1\) such that \(SF(T) \neq \emptyset\).

Then the following hold:

(i) \(F(T) = SF(T) = \{x^*\}\);

(ii) for any \(x \in X\), there exists \(\{x_n\} \subset X\) such that \(x_0 = x\), \(x_{n+1} \in Tx_n\) for all \(n \in \mathbb{N} \cup \{0\}\) and \(x_n \to x^*\).
Proof of Theorem 4.3.

(i) See [16] and [15]. In fact, let $x^* \in SF(T)$. Then we have

$$\{x^*\} \subset SF(T) \subset F(T).$$

Conversely, if $u \in F(T)$, then we have that

$$d(u, x^*) \leq \sup_{v \in Tu} d(v, x^*) = \delta(Tu, x^*)$$

$$= \delta(Tu, Tx^*) \leq H(Tu, Tx^*) \leq \alpha d(u, x^*).$$

Since $0 \leq \alpha < 1$, we have $d(u, x^*) = 0$ and hence $u = x^*$. Thus we have that

$$\{x^*\} = SF(T) = F(T).$$
Proof of Theorem 4.3-cont.

(ii) We have that for any $x \in X$ and $u \in Tx$,

$$d(x, x^*) \leq d(x, u) + d(u, x^*) \leq d(x, u) + H(Tx, x^*).$$
Proof of Theorem 4.3-cont.

(ii) We have that for any $x \in X$ and $u \in Tx$,

\[d(x, x^*) \leq d(x, u) + d(u, x^*) \leq d(x, u) + H(Tx, x^*). \]

Thus we have that

\[d(x, x^*) \leq d(x, Tx) + H(Tx, x^*) \leq d(x, Tx) + \alpha d(x, x^*) \]
Proof of Theorem 4.3-cont.

(ii) We have that for any \(x \in X \) and \(u \in Tx \),

\[
d(x, x^*) \leq d(x, u) + d(u, x^*) \leq d(x, u) + H(Tx, x^*).
\]

Thus we have that

\[
d(x, x^*) \leq d(x, Tx) + H(Tx, x^*) \leq d(x, Tx) + \alpha d(x, x^*)
\]

\(\Rightarrow \) \((1 - \alpha)d(x, x^*) \leq d(x, Tx) \).
(ii) We have that for any \(x \in X \) and \(u \in Tx \),

\[
d(x, x^*) \leq d(x, u) + d(u, x^*) \leq d(x, u) + H(Tx, x^*).
\]

Thus we have that

\[
d(x, x^*) \leq d(x, Tx) + H(Tx, x^*) \leq d(x, Tx) + \alpha d(x, x^*)
\]

\[
\Rightarrow (1 - \alpha) d(x, x^*) \leq d(x, Tx).
\]

Choose a positive \(\varepsilon \) with \(\varepsilon < \frac{1}{\alpha} - 1 \). For any \(u \in X \) with \(u \neq x^* \), we have that \(d(u, x^*) > 0 \) and \(d(u, Tu) > 0 \).
Proof of Theorem 4.3-cont.

(ii) We have that for any $x \in X$ and $u \in Tx$,

$$d(x, x^*) \leq d(x, u) + d(u, x^*) \leq d(x, u) + H(Tx, x^*).$$

Thus we have that

$$d(x, x^*) \leq d(x, Tx) + H(Tx, x^*) \leq d(x, Tx) + \alpha d(x, x^*)$$

$$\Rightarrow (1 - \alpha)d(x, x^*) \leq d(x, Tx).$$

Choose a positive ε with $\varepsilon < \frac{1}{\alpha} - 1$. For any $u \in X$ with $u \neq x^*$, we have that $d(u, x^*) > 0$ and $d(u, Tu) > 0$. Furthermore, we can take $v \in Tu$ from the above inequality such that

$$d(u, v) \leq d(u, Tu) + \varepsilon \left\{ d(u, Tu) - \frac{1}{2}(1 - \alpha)d(x^*, u) \right\}$$

$$= (1 + \varepsilon)d(u, Tu) - \frac{1}{2}\varepsilon(1 - \alpha)d(x^*, u).$$
Proof of Theorem 4.3-cont.

On the other hand, since T is an α-contraction, we have that

$$d(v, Tv) \leq H(Tu, Tv)$$

$$\leq \alpha d(u, v)$$

$$\leq \alpha \{(1 + \varepsilon)d(u, Tu) - \frac{1}{2}\varepsilon(1 - \alpha)d(x^*, u)\} \quad (2)$$

$$= \alpha(1 + \varepsilon)d(u, Tu) - \frac{1}{2}\alpha\varepsilon(1 - \alpha)d(x^*, u)$$

$$\leq \alpha(1 + \varepsilon)d(u, Tu).$$

Thus we have:

$$d(u, Tu) - d(v, Tv) \geq d(u, Tu) - \alpha d(u, v)$$

$$\geq \frac{1}{1+\varepsilon}\{d(u, v) + \frac{1}{2}\varepsilon(1 - \alpha)d(x^*, u)\} - \alpha d(u, v)$$

$$= \left(\frac{1}{1+\varepsilon} - \alpha\right)d(u, v) + \frac{\varepsilon}{2(1+\varepsilon)}(1 - \alpha)d(x^*, u).$$
Proof of Theorem 4.3-cont.

So, we can choose a sequence \(\{x_n\} \subset X \) such that \(x_0 = u \),
\(x_{n+1} \in Tx_n \),

\[
d(x_n, Tx_n) - d(x_{n+1}, Tx_{n+1}) \geq \left(\frac{1}{1 + \varepsilon} - \alpha \right) d(x_n, x_{n+1})
\]
and

\[
d(x_n, Tx_n) - d(x_{n+1}, Tx_{n+1}) \geq \frac{\varepsilon}{2(1 + \varepsilon)} (1 - \alpha) d(x^*, x_n).
\]

Then \(\{x_n\} \) is a Caucy sequence, and \(\{x_n\} \) converges to \(x^* \). This completes the proof.
References

Thank you very much for your attention!